The Application Status of Radiomics-Based Machine Learning in Intrahepatic Cholangiocarcinoma: Systematic Review and Meta-Analysis

无线电技术 医学 肝内胆管癌 荟萃分析 科克伦图书馆 子群分析 内科学 肿瘤科 医学物理学 放射科 人工智能 计算机科学
作者
Lan Xu,Zian Chen,Dan Zhu,Y.M. Wang
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:27: e69906-e69906 被引量:1
标识
DOI:10.2196/69906
摘要

Background Over the past few years, radiomics for the detection of intrahepatic cholangiocarcinoma (ICC) has been extensively studied. However, systematic evidence is lacking in the use of radiomics in this domain, which hinders its further development. Objective To address this gap, our study delved into the status quo and application value of radiomics in ICC and aimed to offer evidence-based support to promote its systematic application in this field. Methods PubMed, Web of Science, Cochrane Library, and Embase were comprehensively retrieved to determine relevant original studies. The study quality was appraised through the Radiomics Quality Score. In addition, subgroup analyses were undertaken according to datasets (training and validation sets), imaging sources, and model types. Results Fifty-eight studies encompassing 12,903 patients were eligible, with an average Radiomics Quality Score of 9.21. Radiomics-based machine learning (ML) was mainly used to diagnose ICC (n=30), microvascular invasion (n=8), gene mutations (n=5), perineural invasion (PNI; n=2), lymph node (LN) positivity (n=2), and tertiary lymphoid structures (TLSs; n=2), and predict overall survival (n=6) and recurrence (n=9). The C-index, sensitivity (SEN), and specificity (SPC) of the ML model developed using clinical features (CFs) for ICC detection were 0.762 (95% CI 0.728-0.796), 0.72 (95% CI 0.66-0.77), and 0.72 (95% CI 0.66-0.78), respectively, in the validation dataset. In contrast, the C-index, SEN, and SPC of the radiomics-based ML model for detecting ICC were 0.853 (95% CI 0.824-0.882), 0.80 (95% CI 0.73-0.85), and 0.88 (95% CI 0.83-0.92), respectively. The C-index, SEN, and SPC of ML constructed using both radiomics and CFs for diagnosing ICC were 0.912 (95% CI 0.889-0.935), 0.77 (95% CI 0.72-0.81), and 0.90 (95% CI 0.86-0.92). The deep learning–based model that integrated both radiomics and CFs yielded a notably higher C-index of 0.924 (0.863-0.984) in the task of detecting ICC. Additional analyses showed that radiomics demonstrated promising accuracy in predicting overall survival and recurrence, as well as in diagnosing microvascular invasion, gene mutations, PNI, LN positivity, and TLSs. Conclusions Radiomics-based ML demonstrates excellent accuracy in the clinical diagnosis of ICC. However, studies involving specific tasks, such as diagnosing PNI and TLSs, are still scarce. The limited research on deep learning has hindered both further analysis and the development of subgroup analyses across various models. Furthermore, challenges such as data heterogeneity and interpretability caused by segmentation and imaging parameter variations require further optimization and refinement. Future research should delve into the application of radiomics to enhance its clinical use. Its integration into clinical practice holds great promise for improving decision-making, boosting diagnostic and treatment accuracy, minimizing unnecessary tests, and optimizing health care resource usage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zz完成签到,获得积分20
1秒前
000完成签到,获得积分10
1秒前
Zoo应助Wang采纳,获得30
1秒前
共享精神应助糖糖采纳,获得10
1秒前
1秒前
鳗鱼发布了新的文献求助10
2秒前
Nicole完成签到 ,获得积分10
2秒前
FashionBoy应助lee采纳,获得10
2秒前
3秒前
sheep完成签到,获得积分10
3秒前
3秒前
彭于晏应助靜心采纳,获得10
3秒前
土土完成签到,获得积分10
3秒前
4秒前
4秒前
共享精神应助栗栗栗知采纳,获得10
4秒前
Zhang完成签到,获得积分10
5秒前
5秒前
5秒前
阿兴完成签到,获得积分10
6秒前
6秒前
kero发布了新的文献求助10
7秒前
8秒前
wroy完成签到,获得积分10
9秒前
一叶知秋应助炙热晓露采纳,获得10
10秒前
albert完成签到,获得积分10
11秒前
领导范儿应助雨打浮萍采纳,获得10
11秒前
科研通AI5应助山海采纳,获得10
11秒前
12秒前
忆仙姿发布了新的文献求助10
12秒前
初雪应助小盆呐采纳,获得10
13秒前
初雪应助小盆呐采纳,获得10
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
甜崽发布了新的文献求助10
14秒前
14秒前
chemxu完成签到,获得积分20
15秒前
16秒前
现代的芹完成签到,获得积分10
16秒前
16秒前
高分求助中
Organic Chemistry 10086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
yolo算法-游泳溺水检测数据集 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4292819
求助须知:如何正确求助?哪些是违规求助? 3819495
关于积分的说明 11960018
捐赠科研通 3462805
什么是DOI,文献DOI怎么找? 1899488
邀请新用户注册赠送积分活动 947684
科研通“疑难数据库(出版商)”最低求助积分说明 850423