The Application Status of Radiomics-Based Machine Learning in Intrahepatic Cholangiocarcinoma: Systematic Review and Meta-Analysis

无线电技术 医学 肝内胆管癌 荟萃分析 科克伦图书馆 子群分析 内科学 肿瘤科 医学物理学 放射科 人工智能 计算机科学
作者
Lan Xu,Zian Chen,Dan Zhu,Y.M. Wang
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:27: e69906-e69906
标识
DOI:10.2196/69906
摘要

Background Over the past few years, radiomics for the detection of intrahepatic cholangiocarcinoma (ICC) has been extensively studied. However, systematic evidence is lacking in the use of radiomics in this domain, which hinders its further development. Objective To address this gap, our study delved into the status quo and application value of radiomics in ICC and aimed to offer evidence-based support to promote its systematic application in this field. Methods PubMed, Web of Science, Cochrane Library, and Embase were comprehensively retrieved to determine relevant original studies. The study quality was appraised through the Radiomics Quality Score. In addition, subgroup analyses were undertaken according to datasets (training and validation sets), imaging sources, and model types. Results Fifty-eight studies encompassing 12,903 patients were eligible, with an average Radiomics Quality Score of 9.21. Radiomics-based machine learning (ML) was mainly used to diagnose ICC (n=30), microvascular invasion (n=8), gene mutations (n=5), perineural invasion (PNI; n=2), lymph node (LN) positivity (n=2), and tertiary lymphoid structures (TLSs; n=2), and predict overall survival (n=6) and recurrence (n=9). The C-index, sensitivity (SEN), and specificity (SPC) of the ML model developed using clinical features (CFs) for ICC detection were 0.762 (95% CI 0.728-0.796), 0.72 (95% CI 0.66-0.77), and 0.72 (95% CI 0.66-0.78), respectively, in the validation dataset. In contrast, the C-index, SEN, and SPC of the radiomics-based ML model for detecting ICC were 0.853 (95% CI 0.824-0.882), 0.80 (95% CI 0.73-0.85), and 0.88 (95% CI 0.83-0.92), respectively. The C-index, SEN, and SPC of ML constructed using both radiomics and CFs for diagnosing ICC were 0.912 (95% CI 0.889-0.935), 0.77 (95% CI 0.72-0.81), and 0.90 (95% CI 0.86-0.92). The deep learning–based model that integrated both radiomics and CFs yielded a notably higher C-index of 0.924 (0.863-0.984) in the task of detecting ICC. Additional analyses showed that radiomics demonstrated promising accuracy in predicting overall survival and recurrence, as well as in diagnosing microvascular invasion, gene mutations, PNI, LN positivity, and TLSs. Conclusions Radiomics-based ML demonstrates excellent accuracy in the clinical diagnosis of ICC. However, studies involving specific tasks, such as diagnosing PNI and TLSs, are still scarce. The limited research on deep learning has hindered both further analysis and the development of subgroup analyses across various models. Furthermore, challenges such as data heterogeneity and interpretability caused by segmentation and imaging parameter variations require further optimization and refinement. Future research should delve into the application of radiomics to enhance its clinical use. Its integration into clinical practice holds great promise for improving decision-making, boosting diagnostic and treatment accuracy, minimizing unnecessary tests, and optimizing health care resource usage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
SHIKI完成签到,获得积分10
2秒前
Timezzz完成签到,获得积分10
2秒前
2秒前
啊印发布了新的文献求助20
2秒前
8029驳回了Xinyu应助
3秒前
Timezzz发布了新的文献求助10
5秒前
杜宇完成签到 ,获得积分10
6秒前
8秒前
8秒前
Forward发布了新的文献求助10
11秒前
挥发酚完成签到,获得积分20
12秒前
田様应助lll采纳,获得10
12秒前
fdxs完成签到,获得积分10
12秒前
啦啦啦发布了新的文献求助10
12秒前
清心淡如水完成签到,获得积分10
13秒前
华仔应助琳雨采纳,获得30
18秒前
20秒前
23秒前
JamesPei应助Forward采纳,获得10
25秒前
for_abSCI完成签到,获得积分10
26秒前
cheezburger发布了新的文献求助10
26秒前
catherine完成签到,获得积分10
27秒前
xj完成签到,获得积分10
27秒前
高贵梦秋完成签到,获得积分10
28秒前
lll发布了新的文献求助10
28秒前
Wd发布了新的文献求助10
30秒前
懵懂的子骞完成签到 ,获得积分10
31秒前
32秒前
未晚完成签到 ,获得积分10
32秒前
陈淑玲完成签到,获得积分10
32秒前
orixero应助张昭蓉采纳,获得10
33秒前
gyf123完成签到,获得积分20
33秒前
宇宇宇c完成签到,获得积分10
35秒前
36秒前
37秒前
桐桐应助啊印采纳,获得10
39秒前
研友_VZG7GZ应助包容的乐蓉采纳,获得10
40秒前
Owen应助淡然的大碗采纳,获得10
40秒前
大胆灵竹发布了新的文献求助10
40秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846818
求助须知:如何正确求助?哪些是违规求助? 3389330
关于积分的说明 10556797
捐赠科研通 3109705
什么是DOI,文献DOI怎么找? 1713870
邀请新用户注册赠送积分活动 825023
科研通“疑难数据库(出版商)”最低求助积分说明 775164