The Application Status of Radiomics-Based Machine Learning in Intrahepatic Cholangiocarcinoma: Systematic Review and Meta-Analysis

无线电技术 医学 肝内胆管癌 荟萃分析 科克伦图书馆 子群分析 内科学 肿瘤科 医学物理学 放射科 人工智能 计算机科学
作者
Lan Xu,Zian Chen,Dan Zhu,Y.M. Wang
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:27: e69906-e69906 被引量:3
标识
DOI:10.2196/69906
摘要

Background Over the past few years, radiomics for the detection of intrahepatic cholangiocarcinoma (ICC) has been extensively studied. However, systematic evidence is lacking in the use of radiomics in this domain, which hinders its further development. Objective To address this gap, our study delved into the status quo and application value of radiomics in ICC and aimed to offer evidence-based support to promote its systematic application in this field. Methods PubMed, Web of Science, Cochrane Library, and Embase were comprehensively retrieved to determine relevant original studies. The study quality was appraised through the Radiomics Quality Score. In addition, subgroup analyses were undertaken according to datasets (training and validation sets), imaging sources, and model types. Results Fifty-eight studies encompassing 12,903 patients were eligible, with an average Radiomics Quality Score of 9.21. Radiomics-based machine learning (ML) was mainly used to diagnose ICC (n=30), microvascular invasion (n=8), gene mutations (n=5), perineural invasion (PNI; n=2), lymph node (LN) positivity (n=2), and tertiary lymphoid structures (TLSs; n=2), and predict overall survival (n=6) and recurrence (n=9). The C-index, sensitivity (SEN), and specificity (SPC) of the ML model developed using clinical features (CFs) for ICC detection were 0.762 (95% CI 0.728-0.796), 0.72 (95% CI 0.66-0.77), and 0.72 (95% CI 0.66-0.78), respectively, in the validation dataset. In contrast, the C-index, SEN, and SPC of the radiomics-based ML model for detecting ICC were 0.853 (95% CI 0.824-0.882), 0.80 (95% CI 0.73-0.85), and 0.88 (95% CI 0.83-0.92), respectively. The C-index, SEN, and SPC of ML constructed using both radiomics and CFs for diagnosing ICC were 0.912 (95% CI 0.889-0.935), 0.77 (95% CI 0.72-0.81), and 0.90 (95% CI 0.86-0.92). The deep learning–based model that integrated both radiomics and CFs yielded a notably higher C-index of 0.924 (0.863-0.984) in the task of detecting ICC. Additional analyses showed that radiomics demonstrated promising accuracy in predicting overall survival and recurrence, as well as in diagnosing microvascular invasion, gene mutations, PNI, LN positivity, and TLSs. Conclusions Radiomics-based ML demonstrates excellent accuracy in the clinical diagnosis of ICC. However, studies involving specific tasks, such as diagnosing PNI and TLSs, are still scarce. The limited research on deep learning has hindered both further analysis and the development of subgroup analyses across various models. Furthermore, challenges such as data heterogeneity and interpretability caused by segmentation and imaging parameter variations require further optimization and refinement. Future research should delve into the application of radiomics to enhance its clinical use. Its integration into clinical practice holds great promise for improving decision-making, boosting diagnostic and treatment accuracy, minimizing unnecessary tests, and optimizing health care resource usage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪小帆发布了新的文献求助10
刚刚
刚刚
海盐芝士完成签到 ,获得积分10
刚刚
Zo完成签到,获得积分10
刚刚
1秒前
麤麤完成签到,获得积分10
1秒前
cencen完成签到 ,获得积分10
2秒前
2秒前
热情高跟鞋完成签到,获得积分10
3秒前
3秒前
3秒前
pluto应助一一采纳,获得10
3秒前
小蓝发布了新的文献求助10
5秒前
俭朴的凝荷完成签到,获得积分10
5秒前
G.Huang发布了新的文献求助10
5秒前
张Z3210_完成签到,获得积分10
6秒前
6秒前
小马甲应助女爰舍予采纳,获得10
7秒前
wualexandra完成签到,获得积分10
7秒前
8秒前
如初完成签到,获得积分10
8秒前
8秒前
8秒前
nnn完成签到,获得积分10
8秒前
Hilda007发布了新的文献求助30
10秒前
lk发布了新的文献求助10
11秒前
Akim应助听话的含羞草采纳,获得10
11秒前
12秒前
浮游应助琥1采纳,获得10
12秒前
Jadon发布了新的文献求助10
12秒前
12秒前
13秒前
Echo完成签到,获得积分10
14秒前
14秒前
wangran_778发布了新的文献求助10
15秒前
一木完成签到,获得积分10
15秒前
15秒前
上官若男应助ni采纳,获得10
15秒前
香蕉觅云应助山外山采纳,获得10
15秒前
啦啦啦完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5307204
求助须知:如何正确求助?哪些是违规求助? 4452932
关于积分的说明 13855643
捐赠科研通 4340527
什么是DOI,文献DOI怎么找? 2383254
邀请新用户注册赠送积分活动 1378068
关于科研通互助平台的介绍 1345895