Evolution of LC–MS/MS in clinical laboratories

标准化 自动化 协调 实验室自动化 计算机科学 过程(计算) 质量(理念) 临床实习 风险分析(工程) 生化工程 医学 工程类 机械工程 哲学 物理 认识论 家庭医学 声学 操作系统
作者
Songlin Yu,Yutong Zou,Xiaoli Ma,Danchen Wang,Wei Luo,Yueming Tang,Danni Mu,Ruiping Zhang,Xinqi Cheng,Ling Qiu
出处
期刊:Clinica Chimica Acta [Elsevier BV]
卷期号:: 117797-117797 被引量:7
标识
DOI:10.1016/j.cca.2024.117797
摘要

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has attracted significant attention in clinical practice owing to its numerous advantages. However, the widespread adoption of this technique is hindered by certain limitations, such as inappropriate analyte selection, low levels of automation, and a lack of specific reference intervals and quality control programs. This review comprehensively summarizes the current challenges associated with LC-MS/MS and proposes potential resolutions. The principle of utility should guide the selection of biomarkers, prioritizing their practical value over sheer quantity. To achieve full-process automation, methodological innovation is crucial for developing high-throughput equipment. Establishing reference intervals for mass spectrometry-based assays across multiple centers and diverse populations is essential for accurate result interpretation. Additionally, the development of commercial quality control materials assumes pivotal importance in ensuring assay reliability and reproducibility. Harmonization and standardization efforts should focus on the development of reference methods and materials for the clinical use of LC-MS/MS. In the future, commercial assay kits and laboratory-developed tests (LDTs) are expected to coexist in clinical laboratories, each offering distinct advantages. The collaborative efforts of diverse professionals is vital for addressing the challenges associated with the clinical application of LC-MS/MS. The anticipated advancements include simplification, increased automation, intelligence, and the standardization of LC-MS/MS, ultimately facilitating its seamless integration into clinical routines for both technicians and clinicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研助手6应助zstyry9998采纳,获得10
刚刚
FIN发布了新的文献求助60
刚刚
CipherSage应助胡多采纳,获得10
1秒前
3秒前
3秒前
科研通AI5应助kk采纳,获得10
5秒前
5秒前
可爱的函函应助WXK@945采纳,获得10
6秒前
scott_zip完成签到 ,获得积分10
7秒前
浩然完成签到,获得积分10
7秒前
脆脆Shark发布了新的文献求助30
8秒前
脑洞疼应助魔幻毛豆采纳,获得10
8秒前
中东魅影完成签到 ,获得积分10
10秒前
11秒前
12秒前
折耳根完成签到 ,获得积分10
12秒前
Jasper应助gua采纳,获得10
12秒前
12秒前
或无情完成签到 ,获得积分10
13秒前
终梦应助Eva采纳,获得10
14秒前
冬冬发布了新的文献求助10
14秒前
Carolin发布了新的文献求助10
14秒前
缓慢千易完成签到,获得积分10
15秒前
脆脆Shark完成签到,获得积分10
16秒前
777发布了新的文献求助10
16秒前
追寻柠檬给追寻柠檬的求助进行了留言
17秒前
胡多发布了新的文献求助10
17秒前
17秒前
星辰大海应助别催我好么采纳,获得150
18秒前
斯文败类应助夕荀采纳,获得10
19秒前
lio发布了新的文献求助10
19秒前
20秒前
Jasper应助CYT采纳,获得10
20秒前
JamesPei应助777采纳,获得10
20秒前
20秒前
21秒前
伊小美完成签到,获得积分10
21秒前
23秒前
24秒前
Zfx发布了新的文献求助10
24秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829234
求助须知:如何正确求助?哪些是违规求助? 3371936
关于积分的说明 10469766
捐赠科研通 3091535
什么是DOI,文献DOI怎么找? 1701173
邀请新用户注册赠送积分活动 818199
科研通“疑难数据库(出版商)”最低求助积分说明 770765