AGCVT-prompt for sentiment classification: Automatically generating chain of thought and verbalizer in prompt learning

计算机科学 可解释性 人工智能 模板 透明度(行为) 深度学习 情绪分析 机器学习 自然语言处理 计算机安全 程序设计语言
作者
Gu Xu,Xiaoliang Chen,Peng Lu,Z. Li,Yajun Du,Xianyong Li
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:132: 107907-107907 被引量:4
标识
DOI:10.1016/j.engappai.2024.107907
摘要

Large language models (LLMs) have revolutionized natural language processing, but they require significant data and hardware resources. Prompt learning offers a solution by enabling a single model for multiple downstream tasks. However, current prompt learning methods rely on costly prompt templates for training. This is a challenge for tasks like sentiment classification, where high-quality templates are hard to create and pseudo-token composed templates can be expensive to train. Recent studies on the chain of thought (COT) have shown that enhancing the presentation of certain aspects of the reasoning process can improve the performance of LLMs. With this in mind, this research introduces the auto-generated COT and verbalizer templates (AGCVT-Prompt) technique, which clusters unlabeled texts according to their identified topic and sentiment. Subsequently, it generates dual verbalizers and formulates both topic and sentiment prompt templates, utilizing the categories discerned within the text and verbalizers. This method significantly improves the transparency and interpretability of the model's decision-making processes. The AGCVT-Prompt technique was evaluated against conventional prompt learning and advanced sentiment classification methods, using state-of-the-art LLMs on both Chinese and English datasets. The results showed superior performance in all evaluations. Specifically, the AGCVT-Prompt method outperformed previous prompt learning techniques in few-shot learning scenarios, providing higher zero-shot and few-shot learning capabilities. Additionally, AGCVT-Prompt was utilized to analyze network comments about Corona Virus Disease 2019, providing valuable insights. These findings indicate that AGCVT-Prompt is a promising alternative for sentiment classification tasks, particularly in situations where labeled data is scarce.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
何小明发布了新的文献求助10
3秒前
orixero应助文章快快来采纳,获得10
3秒前
TEMPO发布了新的文献求助10
3秒前
我的评分完成签到,获得积分10
4秒前
ggyy发布了新的文献求助10
4秒前
4秒前
5秒前
善学以致用应助guozizi采纳,获得10
5秒前
6秒前
聪明怜阳发布了新的文献求助10
7秒前
8秒前
9秒前
尹妮妮完成签到,获得积分10
9秒前
聪明铅笔发布了新的文献求助10
9秒前
小马甲应助犹豫的天问采纳,获得10
9秒前
10秒前
10秒前
兴奋静珊完成签到,获得积分10
13秒前
魔幻的如冰完成签到,获得积分10
13秒前
倒卖土豆完成签到,获得积分10
13秒前
科研通AI5应助neechine采纳,获得10
13秒前
我是老大应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
大个应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
烟花应助科研通管家采纳,获得10
14秒前
cdercder应助科研通管家采纳,获得10
15秒前
夏硕士应助科研通管家采纳,获得10
15秒前
wei完成签到,获得积分10
15秒前
hjyylab应助科研通管家采纳,获得10
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
大个应助科研通管家采纳,获得10
15秒前
在水一方应助科研通管家采纳,获得10
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
15秒前
椰子壳发布了新的文献求助10
15秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844364
求助须知:如何正确求助?哪些是违规求助? 3386802
关于积分的说明 10546075
捐赠科研通 3107287
什么是DOI,文献DOI怎么找? 1711653
邀请新用户注册赠送积分活动 824135
科研通“疑难数据库(出版商)”最低求助积分说明 774519