PROSAIL-Net: A transfer learning-based dual stream neural network to estimate leaf chlorophyll and leaf angle of crops from UAV hyperspectral images

高光谱成像 遥感 卷积神经网络 人工神经网络 基本事实 模式识别(心理学) 计算机科学 人工智能 地理
作者
Sourav Bhadra,Vasit Sagan,Supria Sarkar,Max Braud,Todd C. Mockler,Andrea L. Eveland
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:210: 1-24 被引量:54
标识
DOI:10.1016/j.isprsjprs.2024.02.020
摘要

Accurate and efficient estimation of crop biophysical traits, such as leaf chlorophyll concentrations (LCC) and average leaf angle (ALA), is an important bridge between intelligent crop breeding and precision agriculture. While Unmanned Aerial Vehicle (UAV)-based hyperspectral sensors and advanced machine learning models offer high-throughput solutions, collecting sufficient ground truth data for machine learning training can be challenging, leading to models that lack generalizability for practical uses. This study proposes a transfer learning based dual stream neural network (DSNN) called PROSAIL-Net, which leverages the knowledge gained from PROSAIL simulation and improves the estimation of corn LCC and ALA from UAV-borne hyperspectral images. In addition to hyperspectral data, the DSNN also includes solar-sensor geometry data, which was automatically extracted from a cross-grid UAV flight. The hyperspectral branch in the DSNN was also tested with multi-layer perceptron (MLP), long short-term memory (LSTM), gated recurrent unit (GRU), and 1D convolutional neural network (CNN) architectures. The results suggest that the 1D CNN architecture exhibits superior performance compared to MLP, LSTM, and GRU networks when used in the spectral branch of DSNN. PROSAIL-Net outperforms all other modeling scenarios in predicting LCC (R2 0.66, NRMSE 8.81%) and ALA (R2 0.57, NRMSE 24.32%) and the use of multi-angular UAV observations significantly improves the prediction accuracy of both LCC (R2 improved from 0.52 to 0.66) and ALA (R2 improved from 0.35 to 0.57). This study highlights the importance of utilizing large amounts of PROSAIL-simulated data in conjunction with transfer learning and multi-angular UAV observations in precision agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助蓝羽采纳,获得10
2秒前
你好完成签到,获得积分20
2秒前
2秒前
完美紫易发布了新的文献求助10
2秒前
2秒前
科研通AI6应助加百莉采纳,获得10
2秒前
3秒前
健壮的山槐关注了科研通微信公众号
3秒前
4秒前
科研通AI6应助yichuanfendai采纳,获得10
4秒前
5秒前
DQ发布了新的文献求助10
5秒前
hrj完成签到,获得积分10
5秒前
7秒前
青山语发布了新的文献求助10
7秒前
咕咕完成签到 ,获得积分10
7秒前
欢喜的凡波给欢喜的凡波的求助进行了留言
8秒前
长安遗梦发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
完美紫易完成签到,获得积分10
9秒前
9秒前
9秒前
wzzx发布了新的文献求助10
9秒前
syyyao完成签到,获得积分10
10秒前
10秒前
CipherSage应助cc采纳,获得20
10秒前
river_121发布了新的文献求助30
11秒前
12秒前
13秒前
13秒前
小牛给小牛的求助进行了留言
13秒前
栾花花发布了新的文献求助10
14秒前
月如钩完成签到,获得积分10
15秒前
蓝羽发布了新的文献求助10
15秒前
浮游应助洛神采纳,获得10
15秒前
月亮邮递员完成签到,获得积分10
16秒前
llc完成签到 ,获得积分10
17秒前
Paradox完成签到,获得积分10
17秒前
聪慧中蓝发布了新的文献求助10
18秒前
18秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5448635
求助须知:如何正确求助?哪些是违规求助? 4557147
关于积分的说明 14261810
捐赠科研通 4479887
什么是DOI,文献DOI怎么找? 2454374
邀请新用户注册赠送积分活动 1444978
关于科研通互助平台的介绍 1420864