Analyzing the structure-activity relationship of raspberry polysaccharides using interpretable artificial neural network model

多糖 人工智能 试验装置 吹覆盆子 人工神经网络 可解释性 计算机科学 机器学习 训练集 均方误差 半乳糖 数学 统计 食品科学 化学 生物化学
作者
Jie Lu,Yongjing Yang,Eun-Kyung Hong,Xingxing Yin,Xuehong Wang,Yuting Wang,Dejun Zhang
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:264 (Pt 1): 130354-130354 被引量:15
标识
DOI:10.1016/j.ijbiomac.2024.130354
摘要

The structure-activity relationship has been a hot topic in the field of polysaccharide research. Six polysaccharides and three polysaccharide fragments were obtained from raspberry pulp. Based on their structural information and immune-enhancing activity data, an artificial neural network (ANN) model was used for prediction, and Gradient-weighted class activation mapping (Grad-CAM) algorithm was exploited for explanation structure-activity relationship of these raspberry polysaccharides in the present study. The structural information and immune activity data of raspberry polysaccharides were respectively used as input and output in the ANN model. The training and testing losses of ANN model was no longer decreased after trained for 200 epochs. The mean-square error (MSE) of training set and test set stabilized around 0.003 and 0.013, and the mean absolute percentage error (MAPE) of training set and test set were 0.21 % and 0.98 %, indicating the trained ANN model converged well and exhibited strong robustness. The interpretability analysis showed that molecular weight, content of arabinose, galactose or galacturonic acid, and glycosyl linkage patterns of →3)-Arap-(1→, Araf-(1→, →4)-Galp-(1 → were the main structural factors greatly affecting the immune-enhancing activity of raspberry polysaccharides. This work may provide a new perspective for the study of structure-activity relationship of polysaccharides.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Accept完成签到,获得积分10
3秒前
lijunhao完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
善学以致用应助陈叉叉采纳,获得10
3秒前
如意关注了科研通微信公众号
4秒前
4秒前
传奇3应助张靖松采纳,获得10
4秒前
6秒前
Dotuu发布了新的文献求助10
8秒前
群山发布了新的文献求助10
9秒前
栖迟完成签到,获得积分10
10秒前
happyAlice完成签到,获得积分10
10秒前
10秒前
wlp鹏发布了新的文献求助10
10秒前
zyttttttt完成签到,获得积分10
10秒前
Wangyingjie5发布了新的文献求助30
11秒前
haixia发布了新的文献求助10
11秒前
11秒前
夙念关注了科研通微信公众号
12秒前
2113完成签到,获得积分10
12秒前
大个应助甜甜青文采纳,获得10
13秒前
所所应助梵天采纳,获得10
13秒前
zhu发布了新的文献求助20
14秒前
木木完成签到 ,获得积分10
14秒前
14秒前
李先生发布了新的文献求助10
15秒前
Bluebulu发布了新的文献求助10
15秒前
17秒前
Hello应助毛儿豆儿采纳,获得10
18秒前
18秒前
19秒前
wei发布了新的文献求助10
20秒前
20秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
23秒前
24秒前
24秒前
hexinxin发布了新的文献求助10
25秒前
crx完成签到,获得积分20
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5437563
求助须知:如何正确求助?哪些是违规求助? 4549169
关于积分的说明 14218787
捐赠科研通 4469666
什么是DOI,文献DOI怎么找? 2449541
邀请新用户注册赠送积分活动 1440514
关于科研通互助平台的介绍 1416911