亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-modal fusion network with intra- and inter-modality attention for prognosis prediction in breast cancer

模态(人机交互) 计算机科学 过度拟合 人工智能 乳腺癌 模式 机器学习 人工神经网络 癌症 医学 社会科学 内科学 社会学
作者
Honglei Liu,Yi Shi,Ao Li,Minghui Wang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:168: 107796-107796 被引量:15
标识
DOI:10.1016/j.compbiomed.2023.107796
摘要

Accurate breast cancer prognosis prediction can help clinicians to develop appropriate treatment plans and improve life quality for patients. Recent prognostic prediction studies suggest that fusing multi-modal data, e.g., genomic data and pathological images, plays a crucial role in improving predictive performance. Despite promising results of existing approaches, there remain challenges in effective multi-modal fusion. First, albeit a powerful fusion technique, Kronecker product produces high-dimensional quadratic expansion of features that may result in high computational cost and overfitting risk, thereby limiting its performance and applicability in cancer prognosis prediction. Second, most existing methods put more attention on learning cross-modality relations between different modalities, ignoring modality-specific relations that are complementary to cross-modality relations and beneficial for cancer prognosis prediction. To address these challenges, in this study we propose a novel attention-based multi-modal network to accurately predict breast cancer prognosis, which efficiently models both modality-specific and cross-modality relations without bringing in high-dimensional features. Specifically, two intra-modality self-attentional modules and an inter-modality cross-attentional module, accompanied by latent space transformation of channel affinity matrix, are developed to successfully capture modality-specific and cross-modality relations for efficient integration of genomic data and pathological images, respectively. Moreover, we design an adaptive fusion block to take full advantage of both modality-specific and cross-modality relations. Comprehensive experiment demonstrates that our method can effectively boost prognosis prediction performance of breast cancer and compare favorably with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
16秒前
丁元英发布了新的文献求助10
22秒前
zhangxiaopan应助科研通管家采纳,获得10
37秒前
脑洞疼应助科研通管家采纳,获得10
37秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
闲鱼耶鹤完成签到 ,获得积分10
43秒前
Shaw完成签到,获得积分10
45秒前
妮妮完成签到,获得积分10
48秒前
49秒前
Lucas应助妮妮采纳,获得30
54秒前
书临完成签到 ,获得积分10
1分钟前
无花果应助Magali采纳,获得30
1分钟前
怕孤独的如凡完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
柳行天完成签到 ,获得积分10
2分钟前
lifuhao发布了新的文献求助10
2分钟前
3分钟前
QQ发布了新的文献求助10
3分钟前
joanna完成签到,获得积分10
3分钟前
研友_851Dp8发布了新的文献求助10
3分钟前
Jasper应助葛力采纳,获得10
3分钟前
4分钟前
妮妮发布了新的文献求助30
4分钟前
研友_851Dp8完成签到,获得积分10
4分钟前
希望天下0贩的0应助QQ采纳,获得10
4分钟前
脑洞疼应助科研通管家采纳,获得10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
鬼见愁应助科研通管家采纳,获得10
4分钟前
小蘑菇应助科研通管家采纳,获得10
4分钟前
鬼见愁应助科研通管家采纳,获得10
4分钟前
小马甲应助小学生采纳,获得10
5分钟前
5分钟前
小学生发布了新的文献求助10
5分钟前
6分钟前
QQ发布了新的文献求助10
6分钟前
健忘的金完成签到 ,获得积分10
6分钟前
鬼见愁应助科研通管家采纳,获得10
6分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
MRI Parameters and Positioning 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
A Student's Guide to Developmental Psychology 600
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4155814
求助须知:如何正确求助?哪些是违规求助? 3691553
关于积分的说明 11658812
捐赠科研通 3383109
什么是DOI,文献DOI怎么找? 1856337
邀请新用户注册赠送积分活动 917809
科研通“疑难数据库(出版商)”最低求助积分说明 831154