Multi-modal fusion network with intra- and inter-modality attention for prognosis prediction in breast cancer

模态(人机交互) 计算机科学 过度拟合 人工智能 乳腺癌 模式 机器学习 人工神经网络 癌症 医学 社会科学 内科学 社会学
作者
Honglei Liu,Yi Shi,Ao Li,Minghui Wang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:168: 107796-107796 被引量:6
标识
DOI:10.1016/j.compbiomed.2023.107796
摘要

Accurate breast cancer prognosis prediction can help clinicians to develop appropriate treatment plans and improve life quality for patients. Recent prognostic prediction studies suggest that fusing multi-modal data, e.g., genomic data and pathological images, plays a crucial role in improving predictive performance. Despite promising results of existing approaches, there remain challenges in effective multi-modal fusion. First, albeit a powerful fusion technique, Kronecker product produces high-dimensional quadratic expansion of features that may result in high computational cost and overfitting risk, thereby limiting its performance and applicability in cancer prognosis prediction. Second, most existing methods put more attention on learning cross-modality relations between different modalities, ignoring modality-specific relations that are complementary to cross-modality relations and beneficial for cancer prognosis prediction. To address these challenges, in this study we propose a novel attention-based multi-modal network to accurately predict breast cancer prognosis, which efficiently models both modality-specific and cross-modality relations without bringing in high-dimensional features. Specifically, two intra-modality self-attentional modules and an inter-modality cross-attentional module, accompanied by latent space transformation of channel affinity matrix, are developed to successfully capture modality-specific and cross-modality relations for efficient integration of genomic data and pathological images, respectively. Moreover, we design an adaptive fusion block to take full advantage of both modality-specific and cross-modality relations. Comprehensive experiment demonstrates that our method can effectively boost prognosis prediction performance of breast cancer and compare favorably with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萤阳完成签到,获得积分10
刚刚
飞稿完成签到,获得积分20
刚刚
1秒前
zzz完成签到,获得积分10
2秒前
Ming发布了新的文献求助10
2秒前
寒冷哈密瓜完成签到 ,获得积分0
2秒前
踏实映天完成签到,获得积分10
2秒前
Halo完成签到,获得积分20
2秒前
34Kenny完成签到,获得积分10
3秒前
林大胖子发布了新的文献求助10
3秒前
3秒前
布灵布灵发布了新的文献求助10
3秒前
Brian发布了新的文献求助10
4秒前
PSCs发布了新的文献求助10
4秒前
西瓜完成签到,获得积分10
6秒前
6秒前
cai完成签到,获得积分10
6秒前
8秒前
酷波er应助kk采纳,获得10
8秒前
8秒前
清浅时光完成签到,获得积分20
8秒前
Orange应助娜娜采纳,获得10
9秒前
ccc完成签到,获得积分10
9秒前
JamesPei应助火山采纳,获得10
9秒前
ffff完成签到,获得积分10
10秒前
CipherSage应助mmgf采纳,获得10
10秒前
初一完成签到 ,获得积分20
11秒前
安紊完成签到,获得积分10
11秒前
科研通AI5应助Oven采纳,获得10
11秒前
12秒前
ada完成签到,获得积分10
12秒前
猪猪hero应助灰灰采纳,获得10
12秒前
清浅时光发布了新的文献求助10
12秒前
13秒前
烟花应助wjy321采纳,获得10
13秒前
爱u完成签到 ,获得积分20
15秒前
15秒前
雄i完成签到,获得积分10
15秒前
16秒前
16秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816802
求助须知:如何正确求助?哪些是违规求助? 3360159
关于积分的说明 10407045
捐赠科研通 3078172
什么是DOI,文献DOI怎么找? 1690613
邀请新用户注册赠送积分活动 813964
科研通“疑难数据库(出版商)”最低求助积分说明 767910