Large Language Models for Scientific Synthesis, Inference and Explanation

计算机科学 人工智能 自动汇总 机器翻译 推论 水准点(测量) 语言模型 答疑 自然语言处理 机器学习 大地测量学 地理
作者
Yizhen Zheng,Huan Yee Koh,Jiaxin Ju,Thi Nguyen,Lauren T. May,Geoffrey I. Webb,Shirui Pan
出处
期刊:Cornell University - arXiv 被引量:11
标识
DOI:10.48550/arxiv.2310.07984
摘要

Large language models are a form of artificial intelligence systems whose primary knowledge consists of the statistical patterns, semantic relationships, and syntactical structures of language1. Despite their limited forms of "knowledge", these systems are adept at numerous complex tasks including creative writing, storytelling, translation, question-answering, summarization, and computer code generation. However, they have yet to demonstrate advanced applications in natural science. Here we show how large language models can perform scientific synthesis, inference, and explanation. We present a method for using general-purpose large language models to make inferences from scientific datasets of the form usually associated with special-purpose machine learning algorithms. We show that the large language model can augment this "knowledge" by synthesizing from the scientific literature. When a conventional machine learning system is augmented with this synthesized and inferred knowledge it can outperform the current state of the art across a range of benchmark tasks for predicting molecular properties. This approach has the further advantage that the large language model can explain the machine learning system's predictions. We anticipate that our framework will open new avenues for AI to accelerate the pace of scientific discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
戴衡霞完成签到 ,获得积分10
1秒前
2秒前
2秒前
英俊的铭应助小桂园采纳,获得10
3秒前
8R60d8应助俄克赛普特采纳,获得10
3秒前
3秒前
4秒前
嘟嘟嘟嘟嘟完成签到 ,获得积分10
4秒前
科研通AI6应助周欣玙采纳,获得10
4秒前
4秒前
科研通AI6应助美丽梦桃采纳,获得10
4秒前
涵涵可以发布了新的文献求助10
4秒前
俗人完成签到,获得积分10
5秒前
研友_VZG7GZ应助seazhuzhu采纳,获得10
5秒前
5秒前
zzx完成签到,获得积分10
5秒前
6秒前
苻秋发布了新的文献求助10
7秒前
SciGPT应助Angelina采纳,获得10
7秒前
7秒前
希妍发布了新的文献求助10
7秒前
崔铭哲完成签到,获得积分10
8秒前
爆米花应助熊卿利采纳,获得10
8秒前
彦祖完成签到,获得积分10
8秒前
合适凡发布了新的文献求助10
8秒前
9秒前
陈平安发布了新的文献求助10
9秒前
苏打完成签到,获得积分10
9秒前
许源智啊完成签到,获得积分20
9秒前
9秒前
深情安青应助南星采纳,获得10
10秒前
顶天立地发布了新的文献求助10
11秒前
医路微光完成签到,获得积分10
12秒前
ZzoKk完成签到,获得积分10
12秒前
mddy完成签到,获得积分20
12秒前
落叶听风笑完成签到,获得积分10
13秒前
林自完成签到,获得积分10
13秒前
13秒前
霸气的戒指完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
Aerospace Standards Index - 2025 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5441082
求助须知:如何正确求助?哪些是违规求助? 4551892
关于积分的说明 14232774
捐赠科研通 4472902
什么是DOI,文献DOI怎么找? 2451111
邀请新用户注册赠送积分活动 1442077
关于科研通互助平台的介绍 1418241