药理学
上睑下垂
体内
糖苷
化学
尼氏体
氧化应激
神经保护
生物化学
程序性细胞死亡
细胞凋亡
细胞生物学
医学
生物
染色
病理
立体化学
生物技术
作者
Yan She,Le Shao,Keyan Jiao,Ruiting Sun,Ting Lang,Hong‐Ping Long,Yinghong Tang,Wei Zhang,Changsong Ding,Chang-Qing Deng
出处
期刊:Phytomedicine
[Elsevier BV]
日期:2023-07-30
卷期号:120: 155001-155001
被引量:13
标识
DOI:10.1016/j.phymed.2023.155001
摘要
Glycosides are the pharmacodynamic substances of Buyang Huanwu Decoction (BYHWD) and they exert a protective effect in the brain by inhibiting neuronal pyroptosis of cerebral ischemia-reperfusion (CIR). However, the mechanism by which glycosides regulate neuronal pyroptosis of CIR is still unclear. A significant part of this study aimed to demonstrate whether glycosides have an anti-pyroptotic effect on CIR by nuclear factor erythroid 2-related factor (Nrf2)-mediated antioxidative mechanism. Rats were used in vivo models of middle cerebral artery occlusion and reperfusion (MCAO/R). Neuroprotective effect of glycosides after Nrf2 inhibiting was observed by nerve function score, Nissl staining, Nrf2 fluorescence staining and pyroptotic proteins detection. SH-SY5Y cells were used in vitro models of oxygen-glucose deprivation/reperfusion (OGD/R). Glycosides was evaluated for their effects by measuring cell morphology, survival rate, lactate dehydrogenase (LDH) rate and expression of pyroptotic proteins. Nrf2 si-RNA 54–1 interference with lentivirus was used to create silenced Nrf2 SH-SY5Y cells (si-Nrf2-SH-SY5Y). Glycosides were evaluated on si-Con-SH-SY5Y and si-Nrf2-SH-SY5Y cells based on the expression of Nrf2 signaling pathway, pyroptotic proteins and cell damage manifestation. In vivo, glycosides significantly promoted the fluorescence level of nuclear Nrf2, added more Nissl bodies, reduced neurological function scores and inhibited the pyroptotic proteins level. In vitro, glycosides significantly repaired the morphological damage of cells, promoted the survival rate, reduced the LDH rate, inhibited the pyroptosis. Moreover, antioxidant activity of glycosides was enhanced via Nrf2 activation. Both Nrf2 blocking in vivo and Nrf2 silencing in vitro significantly weakened the pyroptosis inhibitory and neuroprotective effects of glycosides. These results suggested for the first time that glycosides inhibited neuronal pyroptosis by regulating the Nrf2-mediated antioxidant stress pathway, thereby exerting brain protection of CIR. As a result of this study, This study improved understanding of the pharmacodynamics and mechanism of BYHWD, as well as providing a Traditional Chinese Medicine (TCM) treatment strategy for CIR .
科研通智能强力驱动
Strongly Powered by AbleSci AI