病因学
前瞻性队列研究
医学
机器学习
冲程(发动机)
队列研究
队列
人工智能
算法
计算机科学
内科学
机械工程
工程类
作者
Siding Chen,Xiaomeng Yang,Hongqiu Gu,Yanzhao Wang,Zhe Xu,Yong Jiang,Yongjun Wang
标识
DOI:10.1186/s12874-024-02331-1
摘要
The prognosis, recurrence rates, and secondary prevention strategies varied significantly among different subtypes of acute ischemic stroke (AIS). Machine learning (ML) techniques can uncover intricate, non-linear relationships within medical data, enabling the identification of factors associated with etiological classification. However, there is currently a lack of research utilizing ML algorithms for predicting AIS etiology.
科研通智能强力驱动
Strongly Powered by AbleSci AI