A Bi-directionally Fused Boundary Aware Network for Skin Lesion Segmentation

分割 图像分割 人工智能 计算机科学 计算机视觉 边界(拓扑) 模式识别(心理学) 数学 数学分析
作者
Feiniu Yuan,Y. Peng,Qinghua Huang,Xuelong Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 6340-6353
标识
DOI:10.1109/tip.2024.3482864
摘要

It is quite challenging to visually identify skin lesions with irregular shapes, blurred boundaries and large scale variances. Convolutional Neural Network (CNN) extracts more local features with abundant spatial information, while Transformer has the powerful ability to capture more global information but with insufficient spatial details. To overcome the difficulties in discriminating small or blurred skin lesions, we propose a Bi-directionally Fused Boundary Aware Network (BiFBA-Net). To utilize complementary features produced by CNNs and Transformers, we design a dual-encoding structure. Different from existing dual-encoders, our method designs a Bi-directional Attention Gate (Bi-AG) with two inputs and two outputs for crosswise feature fusion. Our Bi-AG accepts two kinds of features from CNN and Transformer encoders, and two attention gates are designed to generate two attention outputs that are sent back to the two encoders. Thus, we implement adequate exchanging of multi-scale information between CNN and Transformer encoders in a bi-directional and attention way. To perfectly restore feature maps, we propose a progressive decoding structure with boundary aware, containing three decoders with six supervised losses. The first decoder is a CNN network for producing more spatial details. The second one is a Partial Decoder (PD) for aggregating high-level features with more semantics. The last one is a Boundary Aware Decoder (BAD) proposed to progressively improve boundary accuracy. Our BAD uses residual structure and Reverse Attention (RA) at different scales to deeply mine structural and spatial details for refining lesion boundaries. Extensive experiments on public datasets show that our BiFBA-Net achieves higher segmentation accuracy, and has much better ability of boundary perceptions than compared methods. It also alleviates both over-segmentation of small lesions and under-segmentation of large ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪慧雪糕发布了新的文献求助30
刚刚
嘟嘟发布了新的文献求助10
1秒前
在水一方应助Dxc采纳,获得10
1秒前
1秒前
我爱看文献完成签到,获得积分10
1秒前
SXYYXS完成签到 ,获得积分10
2秒前
哈哈哈的一笑完成签到,获得积分10
2秒前
卡卡西应助cuen采纳,获得10
2秒前
木心儿吖完成签到 ,获得积分10
2秒前
3秒前
斯文败类应助谢谢李采纳,获得10
3秒前
3秒前
Amber发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
由凡发布了新的文献求助10
4秒前
SYLH应助洁净艳一采纳,获得80
4秒前
yyy完成签到,获得积分10
5秒前
5秒前
海边听海完成签到 ,获得积分0
5秒前
科研通AI5应助沉静龙猫采纳,获得10
5秒前
木心儿吖关注了科研通微信公众号
6秒前
6秒前
早日毕业完成签到,获得积分10
6秒前
drchen发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
8秒前
Reyyyy完成签到,获得积分10
8秒前
8秒前
C2完成签到,获得积分20
8秒前
8秒前
万仁杰完成签到 ,获得积分10
8秒前
深情安青应助nian采纳,获得10
9秒前
熊熊爱完成签到,获得积分10
9秒前
REN关闭了REN文献求助
10秒前
kenny完成签到,获得积分20
10秒前
1111发布了新的文献求助20
10秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808831
求助须知:如何正确求助?哪些是违规求助? 3353506
关于积分的说明 10365583
捐赠科研通 3069749
什么是DOI,文献DOI怎么找? 1685746
邀请新用户注册赠送积分活动 810704
科研通“疑难数据库(出版商)”最低求助积分说明 766300