清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Logistic Regression Analysis of LC-MS/MS Data of Monomers Eluted from Aged Dental Composites: A Supervised Machine-Learning Approach

化学 人工智能 数据库 色谱法 计算机科学
作者
Chien‐Chia Chen,Karabi Mondal,Philippe Vervliet,Adrian Covaci,Evan P. O’Brien,Karl J. Rockne,James L. Drummond,Luke Hanley
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (12): 5205-5213 被引量:13
标识
DOI:10.1021/acs.analchem.2c04362
摘要

Compound identification by database searching that matches experimental with library mass spectra is commonly used in mass spectrometric (MS) data analysis. Vendor software often outputs scores that represent the quality of each spectral match for the identified compounds. However, software-generated identification results can differ drastically depending on the initial search parameters. Machine learning is applied here to provide a statistical evaluation of software-generated compound identification results from experimental tandem MS data. This task was accomplished using the logistic regression algorithm to assign an identification probability value to each identified compound. Logistic regression is usually used for classification, but here it is used to generate identification probabilities without setting a threshold for classification. Liquid chromatography coupled with quadrupole-time-of-flight tandem MS was used to analyze the organic monomers leached from resin-based dental composites in a simulated oral environment. The collected tandem MS data were processed with vendor software, followed by statistical evaluation of these results using logistic regression. The assigned identification probability to each compound provides more confidence in identification beyond solely by database matching. A total of 21 distinct monomers were identified among all samples, including five intact monomers and chemical degradation products of bisphenol A glycidyl methacrylate (BisGMA), oligomers of bisphenol-A ethoxylate methacrylate (BisEMA), triethylene glycol dimethacrylate (TEGDMA), and urethane dimethacrylate (UDMA). The logistic regression model can be used to evaluate any database-matched liquid chromatography-tandem MS result by training a new model using analytical standards of compounds present in a chosen database and then generating identification probabilities for candidates from unknown data using the new model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蚊蚊爱读书应助小刘同学采纳,获得10
10秒前
star完成签到,获得积分10
22秒前
31秒前
1437594843完成签到 ,获得积分10
35秒前
锦鲤完成签到 ,获得积分20
35秒前
51秒前
53秒前
袁青寒发布了新的文献求助10
56秒前
袁青寒发布了新的文献求助10
56秒前
蚊蚊爱读书应助小刘同学采纳,获得10
59秒前
啦啦啦完成签到 ,获得积分10
1分钟前
1分钟前
顺利山柏完成签到 ,获得积分10
1分钟前
Echopotter发布了新的文献求助10
1分钟前
Jenny发布了新的文献求助10
1分钟前
2分钟前
2分钟前
Yini应助Lny采纳,获得50
2分钟前
2分钟前
xiaowangwang完成签到 ,获得积分10
3分钟前
whitepiece完成签到,获得积分10
3分钟前
3分钟前
binfo完成签到,获得积分0
3分钟前
3分钟前
领导范儿应助袁青寒采纳,获得10
3分钟前
Moto_Fang完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI2S应助ceeray23采纳,获得30
4分钟前
4分钟前
huluwa完成签到,获得积分10
4分钟前
Lny发布了新的文献求助20
4分钟前
Biwanbo完成签到 ,获得积分10
4分钟前
ceeray23发布了新的文献求助20
5分钟前
爆米花应助ceeray23采纳,获得20
5分钟前
科研通AI6应助科研通管家采纳,获得30
5分钟前
科研通AI6应助Jenny采纳,获得10
5分钟前
Lny发布了新的文献求助10
5分钟前
123完成签到,获得积分10
5分钟前
胖小羊完成签到 ,获得积分10
5分钟前
等待的谷波完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5555034
求助须知:如何正确求助?哪些是违规求助? 4639580
关于积分的说明 14656405
捐赠科研通 4581538
什么是DOI,文献DOI怎么找? 2512852
邀请新用户注册赠送积分活动 1487530
关于科研通互助平台的介绍 1458542