已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Soil Moisture Prediction from Remote Sensing Images Coupled with Climate, Soil Texture and Topography via Deep Learning

环境科学 均方误差 遥感 含水量 反向散射(电子邮件) 卫星 土壤质地 气象学 土壤科学 计算机科学 土壤水分 地质学 数学 统计 无线 电信 岩土工程 航空航天工程 工程类 物理
作者
Mehmet Furkan Çelik,Mustafa Serkan Işık,Onur Yüzügüllü,Noura Fajraoui,Esra Erten
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:14 (21): 5584-5584 被引量:81
标识
DOI:10.3390/rs14215584
摘要

Soil moisture (SM) is an important biophysical parameter by which to evaluate water resource potential, especially for agricultural activities under the pressure of global warming. The recent advancements in different types of satellite imagery coupled with deep learning-based frameworks have opened the door for large-scale SM estimation. In this research, high spatial resolution Sentinel-1 (S1) backscatter data and high temporal resolution soil moisture active passive (SMAP) SM data were combined to create short-term SM predictions that can accommodate agricultural activities in the field scale. We created a deep learning model to forecast the daily SM values by using time series of climate and radar satellite data along with the soil type and topographic data. The model was trained with static and dynamic features that influence SM retrieval. Although the topography and soil texture data were taken as stationary, SMAP SM data and Sentinel-1 (S1) backscatter coefficients, including their ratios, and climate data were fed to the model as dynamic features. As a target data to train the model, we used in situ measurements acquired from the International Soil Moisture Network (ISMN). We employed a deep learning framework based on long short-term memory (LSTM) architecture with two hidden layers that have 32 unit sizes and a fully connected layer. The accuracy of the optimized LSTM model was found to be effective for SM prediction with the coefficient of determination (R2) of 0.87, root mean square error (RMSE) of 0.046, unbiased root mean square error (ubRMSE) of 0.045, and mean absolute error (MAE) of 0.033. The model’s performance was also evaluated concerning above-ground biomass, land cover classes, soil texture variations, and climate classes. The model prediction ability was lower in areas with high normalized difference vegetation index (NDVI) values. Moreover, the model can better predict in dry climate areas, such as arid and semi-arid climates, where precipitation is relatively low. The daily prediction of SM values based on microwave remote sensing data and geophysical features was successfully achieved by using an LSTM framework to assist various studies, such as hydrology and agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuyuyu完成签到 ,获得积分20
2秒前
7秒前
领导范儿应助周诣扬采纳,获得10
7秒前
8秒前
9秒前
情怀应助zzt采纳,获得10
9秒前
10秒前
吴兰田完成签到,获得积分10
12秒前
ZA发布了新的文献求助10
12秒前
欣欣发布了新的文献求助10
12秒前
13秒前
失眠的流沙完成签到,获得积分10
13秒前
13秒前
一一发布了新的文献求助10
14秒前
nojego完成签到,获得积分10
14秒前
17秒前
111完成签到 ,获得积分10
17秒前
欣欣完成签到,获得积分20
18秒前
yingying完成签到 ,获得积分10
19秒前
momo完成签到,获得积分10
21秒前
qianyixingchen完成签到 ,获得积分10
22秒前
时间尘埃完成签到,获得积分10
22秒前
小成完成签到 ,获得积分10
22秒前
23秒前
wangqingxia完成签到,获得积分10
23秒前
情怀应助victorycici采纳,获得10
28秒前
周诣扬发布了新的文献求助10
28秒前
RanHe完成签到,获得积分10
30秒前
30秒前
ZA完成签到,获得积分10
31秒前
Unlisted完成签到,获得积分10
32秒前
Dream点壹完成签到,获得积分10
33秒前
斯文钢笔完成签到 ,获得积分10
35秒前
大个应助一大只北极熊采纳,获得10
37秒前
昔年若许完成签到,获得积分10
38秒前
39秒前
制冷剂完成签到 ,获得积分10
41秒前
周诣扬完成签到,获得积分10
47秒前
zzt完成签到,获得积分10
49秒前
Vaibhav完成签到,获得积分10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253251
求助须知:如何正确求助?哪些是违规求助? 4416710
关于积分的说明 13750418
捐赠科研通 4288976
什么是DOI,文献DOI怎么找? 2353233
邀请新用户注册赠送积分活动 1349967
关于科研通互助平台的介绍 1309716