Towards contrast-agnostic soft segmentation of the spinal cord

分割 人工智能 对比度(视觉) 计算机科学 计算机视觉 模式识别(心理学) 解剖 医学
作者
Sandrine Bédard,Enamundram Naga Karthik,Charidimos Tsagkas,Emanuele Pravatà,Cristina Granziera,Andrew C. Smith,Kenneth A. Weber,Julien Cohen‐Adad
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:101: 103473-103473 被引量:11
标识
DOI:10.1016/j.media.2025.103473
摘要

Spinal cord segmentation is clinically relevant and is notably used to compute spinal cord cross-sectional area (CSA) for the diagnosis and monitoring of cord compression or neurodegenerative diseases such as multiple sclerosis. While several semi and automatic methods exist, one key limitation remains: the segmentation depends on the MRI contrast, resulting in different CSA across contrasts. This is partly due to the varying appearance of the boundary between the spinal cord and the cerebrospinal fluid that depends on the sequence and acquisition parameters. This contrast-sensitive CSA adds variability in multi-center studies where protocols can vary, reducing the sensitivity to detect subtle atrophies. Moreover, existing methods enhance the CSA variability by training one model per contrast, while also producing binary masks that do not account for partial volume effects. In this work, we present a deep learning-based method that produces soft segmentations of the spinal cord that are stable across MRI contrasts. Using the Spine Generic Public Database of healthy participants (n=267; contrasts=6), we first generated participant-wise soft ground truth (GT) by averaging the binary segmentations across all 6 contrasts. These soft GT, along with aggressive data augmentation and a regression-based loss function, were then used to train a U-Net model for spinal cord segmentation. We evaluated our model against state-of-the-art methods and performed ablation studies involving different GT mask types, loss functions, contrast-specific models and domain generalization methods. Our results show that using the soft average segmentations along with a regression loss function reduces CSA variability (p<0.05, Wilcoxon signed-rank test). The proposed spinal cord segmentation model generalizes better than the state-of-the-art contrast-specific methods amongst unseen datasets, vendors, contrasts, and pathologies (compression, lesions), while accounting for partial volume effects. Our model is integrated into the Spinal Cord Toolbox (v6.2 and higher).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心的若烟完成签到,获得积分10
刚刚
xiaofenzi完成签到,获得积分10
4秒前
韭菜发布了新的文献求助10
5秒前
聪明的哈密瓜完成签到,获得积分10
6秒前
风不尽,树不静完成签到 ,获得积分10
6秒前
yu完成签到 ,获得积分10
7秒前
科研人完成签到,获得积分10
7秒前
Wangyidi完成签到 ,获得积分10
9秒前
彩卷卷关注了科研通微信公众号
9秒前
夜信完成签到,获得积分10
10秒前
10秒前
YOWIE完成签到,获得积分10
11秒前
雷欧奥特曼完成签到,获得积分10
11秒前
wss完成签到 ,获得积分10
11秒前
Criminology34应助含蓄的惜萱采纳,获得10
11秒前
小可爱完成签到 ,获得积分10
12秒前
小青椒应助囡囝囿团采纳,获得20
14秒前
lhxie发布了新的文献求助10
14秒前
季夏完成签到 ,获得积分10
15秒前
lvy发布了新的文献求助10
16秒前
迷路凌柏完成签到 ,获得积分10
16秒前
paleo-地质完成签到,获得积分10
16秒前
许大脚完成签到 ,获得积分10
16秒前
清爽朋友完成签到,获得积分10
17秒前
KJ完成签到,获得积分10
17秒前
sugar完成签到,获得积分10
17秒前
Sunny完成签到,获得积分10
18秒前
大模型应助韭菜采纳,获得10
19秒前
19秒前
叶明杰完成签到 ,获得积分10
22秒前
yhq发布了新的文献求助10
23秒前
含蓄的惜萱完成签到,获得积分10
24秒前
24秒前
小林子完成签到,获得积分0
25秒前
温如军完成签到 ,获得积分10
26秒前
zy完成签到 ,获得积分10
26秒前
lhxie完成签到,获得积分10
27秒前
莫封叶完成签到,获得积分10
28秒前
子车茗应助生动成风采纳,获得30
28秒前
芹123发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5281894
求助须知:如何正确求助?哪些是违规求助? 4436144
关于积分的说明 13807234
捐赠科研通 4316513
什么是DOI,文献DOI怎么找? 2369359
邀请新用户注册赠送积分活动 1364730
关于科研通互助平台的介绍 1328245