Lightweight Deep Learning Model, ConvNeXt-U: An Improved U-Net Network for Extracting Cropland in Complex Landscapes from Gaofen-2 Images

计算机科学 深度学习 人工智能 特征提取 卷积神经网络 编码器 模式识别(心理学) 遥感 地理 操作系统
作者
Sijie Liu,Cao Shi,Lu Xia,Junhuan Peng,LV Ping,Xiang Fan,Feiyu Teng,Xiangnan Liu
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:25 (1): 261-261
标识
DOI:10.3390/s25010261
摘要

Extracting fragmented cropland is essential for effective cropland management and sustainable agricultural development. However, extracting fragmented cropland presents significant challenges due to its irregular and blurred boundaries, as well as the diversity in crop types and distribution. Deep learning methods are widely used for land cover classification. This paper proposes ConvNeXt-U, a lightweight deep learning network that efficiently extracts fragmented cropland while reducing computational requirements and saving costs. ConvNeXt-U retains the U-shaped structure of U-Net but replaces the encoder with a simplified ConvNeXt architecture. The decoder remains unchanged from U-Net, and the lightweight CBAM (Convolutional Block Attention Module) is integrated. This module adaptively adjusts the channel and spatial dimensions of feature maps, emphasizing key features and suppressing redundant information, which enhances the capture of edge features and improves extraction accuracy. The case study area is Hengyang County, Hunan Province, China, using GF-2 remote sensing imagery. The results show that ConvNeXt-U outperforms existing methods, such as Swin Transformer (Acc = 85.1%, IoU = 79.1%), MobileNetV3 (Acc = 83.4%, IoU = 77.6%), VGG16 (Acc = 80.5%, IoU = 74.6%), and ResUnet (Acc = 81.8%, IoU = 76.1%), achieving an IoU of 79.5% and Acc of 85.2%. Under the same conditions, ConvNeXt-U has a faster inference speed of 37 images/s, compared to 28 images/s for Swin Transformer, 35 images/s for MobileNetV3, and 0.43 and 0.44 images/s for VGG16 and ResUnet, respectively. Moreover, ConvNeXt-U outperforms other methods in processing the boundaries of fragmented cropland, producing clearer and more complete boundaries. The results indicate that the ConvNeXt and CBAM modules significantly enhance the accuracy of fragmented cropland extraction. ConvNeXt-U is also an effective method for extracting fragmented cropland from remote sensing imagery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
clyhg完成签到,获得积分10
刚刚
彭于晏应助刘成财采纳,获得10
刚刚
bible完成签到,获得积分10
1秒前
@∞发布了新的文献求助20
1秒前
双珠完成签到,获得积分10
1秒前
2秒前
翁sir完成签到,获得积分10
2秒前
4秒前
李倇仪完成签到,获得积分10
4秒前
4秒前
研友_qZAaGZ完成签到,获得积分10
4秒前
小晓完成签到,获得积分10
5秒前
玩命的一笑完成签到,获得积分20
5秒前
吞吞发布了新的文献求助30
5秒前
5秒前
6秒前
6秒前
瓜瓜完成签到,获得积分10
6秒前
ding应助干大事的小喽啰采纳,获得10
7秒前
cao发布了新的文献求助10
7秒前
8秒前
斯文败类应助乐乐乐宝采纳,获得10
8秒前
jun完成签到,获得积分10
8秒前
8秒前
科研通AI5应助舒适路人采纳,获得10
9秒前
Carry发布了新的文献求助10
9秒前
9秒前
Almond完成签到,获得积分10
9秒前
董dong完成签到,获得积分10
10秒前
东方巧曼完成签到,获得积分10
10秒前
yu发布了新的文献求助10
11秒前
猪猪hero发布了新的文献求助10
11秒前
xxx发布了新的文献求助10
12秒前
12秒前
折耳根料理大师完成签到,获得积分20
12秒前
跳跃的惮发布了新的文献求助10
12秒前
lucas发布了新的文献求助10
13秒前
Owen应助甜蜜的凌旋采纳,获得10
13秒前
今后应助karry采纳,获得30
13秒前
安鲁完成签到,获得积分10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786235
求助须知:如何正确求助?哪些是违规求助? 3331908
关于积分的说明 10252787
捐赠科研通 3047188
什么是DOI,文献DOI怎么找? 1672476
邀请新用户注册赠送积分活动 801290
科研通“疑难数据库(出版商)”最低求助积分说明 760141