AI-powered precision: breast carcinoma diagnosis through digital proliferation index (Ki-67) assessment in pathological anatomy

病态的 病理解剖学 增殖指数 索引(排版) 病理 医学 增殖指数 乳腺癌 肿瘤科 解剖 乳腺癌 内科学 计算机科学 癌症 免疫组织化学 万维网
作者
Elmehdi Aniq,Mohamed Chakraoui,Naoual Mouhni
出处
期刊:Data technologies and applications [Emerald (MCB UP)]
卷期号:59 (2): 216-230
标识
DOI:10.1108/dta-12-2023-0866
摘要

Purpose The primary objective of the study is to enhance the accuracy and efficiency of assessing the proliferation index in cancer cells, specifically focusing on the role of Ki-67. The purpose is to address the limitations of traditional visual assessments conducted by pathologists by integrating AI technologies, particularly deep learning. By accurately computing the percentage of Ki-67-labeled cells, the research aims to streamline the diagnostic process, reduce subjectivity and contribute to the advancement of diagnostic precision in pathological anatomy. Design/methodology/approach The research employs a methodological approach that integrates Ki-67, a non-histone nuclear protein, as a vital biomarker for assessing the proliferative status of cancer cells. Given the challenges associated with traditional visual assessments by pathologists, including inter- and intra-observer variability and time-consuming efforts, the study adopts a novel methodology leveraging artificial intelligence (AI) solutions. Deep learning is applied to precisely calculate the percentage of Ki-67-labeled cells. The process involves pathologists delineating the tumor area at x40 magnification, enabling the segmentation of various cell types (positive, negative and tumor-infiltrating lymphocytes). The subsequent percentage calculation enhances efficiency and minimizes subjectivity in the diagnostic process. Findings Despite inherent errors, the research findings indicate that the model surpasses existing benchmarks, showcasing superior accuracy in terms of average error measurement. The comparison with diverse datasets and benchmarking against pathologists’ diagnoses contributes empirical evidence to support the effectiveness of the AI-based model in accurately computing the percentage of Ki-67-labeled cells. These findings signify a noteworthy advancement in diagnostic methodologies and reinforce the potential of AI technologies in improving the precision of cancer diagnostics within the realm of pathological anatomy. Originality/value The research contributes to the field by introducing an innovative approach that combines Ki-67 as a biomarker and AI technologies for improved diagnostic precision. The originality lies in the utilization of deep learning to calculate the percentage of labeled cells, mitigating the challenges associated with manual assessments. The validation of the model against diverse datasets and benchmarking against pathologists’ diagnoses demonstrates its superior accuracy, highlighting the value of integrating AI in pathological anatomy for enhanced diagnostic outcomes. The study represents a significant stride in original research, offering novel insights and methodologies in the pursuit of more precise cancer diagnostics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
请风再拂面完成签到,获得积分10
1秒前
1秒前
4秒前
能干大树完成签到,获得积分10
4秒前
舒心盼曼完成签到,获得积分20
6秒前
didi发布了新的文献求助10
6秒前
传奇3应助aa采纳,获得10
6秒前
打打应助aa采纳,获得10
6秒前
酷波er应助aa采纳,获得10
7秒前
CipherSage应助aa采纳,获得10
7秒前
123完成签到,获得积分10
7秒前
Roger完成签到,获得积分10
7秒前
9秒前
无敌阿东发布了新的文献求助10
9秒前
希望天下0贩的0应助iwhisper采纳,获得10
9秒前
Akim应助现代柠檬采纳,获得10
10秒前
yangyeye完成签到,获得积分10
10秒前
记忆面包完成签到,获得积分10
10秒前
酷波er应助失眠的丹翠采纳,获得10
10秒前
11秒前
PAPA完成签到,获得积分10
12秒前
13秒前
buno应助脆啵啵马克宝采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
求助人员发布了新的文献求助10
14秒前
烟花应助科研通管家采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
水123发布了新的文献求助10
14秒前
Owen应助科研通管家采纳,获得10
14秒前
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
ding应助科研通管家采纳,获得10
14秒前
大个应助科研通管家采纳,获得10
14秒前
Tiny发布了新的文献求助10
14秒前
Akim应助科研通管家采纳,获得10
14秒前
tcf应助科研通管家采纳,获得20
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601299
求助须知:如何正确求助?哪些是违规求助? 4686815
关于积分的说明 14846229
捐赠科研通 4680459
什么是DOI,文献DOI怎么找? 2539291
邀请新用户注册赠送积分活动 1506167
关于科研通互助平台的介绍 1471283