Improving image quality and lung nodule detection for low-dose chest CT by using generative adversarial network reconstruction

医学 图像质量 成像体模 降噪 人工智能 残余物 噪音(视频) 放射科 计算机科学 核医学
作者
Qiqi Cao,Yifu Mao,Le Qin,Guotao Quan,Fuhua Yan,Wenjie Yang
出处
期刊:British Journal of Radiology [Wiley]
标识
DOI:10.1259/bjr.20210125
摘要

Objectives: To investigate the improvement of two denoising models with different learning targets (Dir and Res) of generative adversarial network (GAN) on image quality and lung nodule detectability in chest low-dose CT (LDCT). Methods: In training phase, by using LDCT images simulated from standard dose CT (SDCT) of 200 participants, Dir model was trained targeting SDCT images, while Res model targeting the residual between SDCT and LDCT images. In testing phase, a phantom and 95 chest LDCT, exclusively with training data, were included for evaluation of imaging quality and pulmonary nodules detectability. Results: For phantom images, structural similarity, peak signal-to-noise ratio of both Res and Dir models were higher than that of LDCT. Standard deviation of Res model was the lowest. For patient images, image noise and quality of both two models, were better than that of LDCT. Artifacts of Res model was less than that of LDCT. The diagnostic sensitivity of lung nodule by two readers for LDCT, Res and Dir model, were 72/77%, 79/83% and 72/79% respectively. Conclusion: Two GAN denoising models, including Res and Dir trained with different targets, could effectively reduce image noise of chest LDCT. The image quality evaluation scoring and nodule detectability of Res denoising model was better than that of Dir denoising model and that of hybrid IR images. Advances in knowledge: The GAN-trained model, which learned the residual between SDCT and LDCT images, reduced image noise and increased the lung nodule detectability by radiologists on chest LDCT. This demonstrates the potential for clinical benefit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shuilongyin2024完成签到 ,获得积分10
刚刚
z.发布了新的文献求助10
刚刚
卡卡完成签到 ,获得积分10
刚刚
小杜小杜完成签到,获得积分10
刚刚
KEN发布了新的文献求助10
1秒前
拼搏的思萱完成签到 ,获得积分10
1秒前
YQ发布了新的文献求助10
1秒前
白菜完成签到,获得积分10
2秒前
2秒前
djf点儿发布了新的文献求助10
3秒前
奋斗的幼荷完成签到,获得积分10
3秒前
shanshanlaichi完成签到,获得积分20
4秒前
4秒前
赘婿应助Bgeelyu采纳,获得10
4秒前
7秒前
搜第一完成签到,获得积分10
7秒前
han完成签到,获得积分10
8秒前
小廖完成签到,获得积分10
8秒前
科研通AI5应助彭雄武采纳,获得10
8秒前
科研小Li发布了新的文献求助10
8秒前
噜噜晓发布了新的文献求助10
8秒前
公冶笑白完成签到,获得积分10
8秒前
lina发布了新的文献求助10
9秒前
9秒前
标致青丝完成签到,获得积分20
9秒前
KEN完成签到,获得积分10
9秒前
CC完成签到 ,获得积分10
10秒前
灰色白面鸮完成签到,获得积分10
11秒前
11秒前
科研通AI5应助djm采纳,获得10
11秒前
英姑应助黑色幽默采纳,获得10
12秒前
12秒前
共享精神应助口外彭于晏采纳,获得10
12秒前
12秒前
ldy发布了新的文献求助10
12秒前
打打应助13223456采纳,获得10
13秒前
香蕉觅云应助feng采纳,获得10
13秒前
hh完成签到,获得积分20
13秒前
在水一方应助六月歌者采纳,获得10
14秒前
斯文败类应助lizi采纳,获得10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789277
求助须知:如何正确求助?哪些是违规求助? 3334313
关于积分的说明 10269025
捐赠科研通 3050734
什么是DOI,文献DOI怎么找? 1674119
邀请新用户注册赠送积分活动 802497
科研通“疑难数据库(出版商)”最低求助积分说明 760692