GLM7 – A Novel Composite Glycolipid Index Derived from Routine Health Indicators for Enhanced Diagnosis and Prediction of Multimorbidity

全国健康与营养检查调查 疾病 糖尿病 尿检 环境卫生 内科学 医学 人口 内分泌学 尿
作者
Zhihua Wang,Shuo Chen,Xiaojun Feng,Xi Chen,Paul C. Evans,Hans Strijdom,Yu Ding,Jianping Weng,Suowen Xu
出处
期刊:Advanced Science [Wiley]
卷期号:: e10552-e10552 被引量:1
标识
DOI:10.1002/advs.202510552
摘要

Abstract Routine health examinations for healthy adults typically involve measurements such as height, weight, blood biochemistry, complete blood count, and urinalysis. However, the current scope of physical examinations has expanded to include numerous tests, some of which have questionable insight into underlying pathology. In this study, we analyzed 26,289 samples from the NHANES (National Health and Nutrition Examination Survey) database, along with 49 included indicators, to systematically explore the correlation between conventional indicators and various diseases. Our aim was to establish new diagnostic and predictive indicators. Initially, the top 10 diagnostic and predictive indicators for five disease categories, namely cardiovascular diseases, diabetes, liver diseases, cancer, and comorbidities, are identified, and the reliability of the routine test indicators is emphasized. Moreover, GLM7 (glycolipid metabolism 7 factors), a novel indicator integrating seven routine factors, has been developed. Restricted cubic spline (RCS) analysis and forest plot evaluations reveal its relationships and risk thresholds across diseases. An extreme gradient boosting (XGBoost) model using these factors exhibits excellent predictive performance in both the NHANES discovery and CHARLS (China Health and Retirement Longitudinal Study) validation cohorts. This study confirms conventional indicators' efficacy and introduces GLM7 as a tool for disease diagnosis/prediction, providing new insights into precise disease management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
穆晴朗完成签到,获得积分10
1秒前
舒适的晓蓝完成签到,获得积分20
1秒前
道以文完成签到,获得积分10
1秒前
自信的冬日完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
雷家完成签到,获得积分10
2秒前
2秒前
zhengke924完成签到,获得积分10
2秒前
2秒前
欣喜傲珊发布了新的文献求助10
2秒前
李小羊完成签到,获得积分10
3秒前
3秒前
3秒前
Yeah发布了新的文献求助10
4秒前
田様应助斯文沛儿采纳,获得10
5秒前
要减肥千秋完成签到,获得积分10
5秒前
小扁大王完成签到 ,获得积分10
5秒前
机智向松完成签到,获得积分10
5秒前
6秒前
大爆炸鱼完成签到 ,获得积分10
6秒前
6秒前
7秒前
xzg111发布了新的文献求助10
7秒前
LinDan完成签到,获得积分10
7秒前
唯我文乃完成签到,获得积分10
7秒前
温柔的尔芙完成签到,获得积分10
8秒前
舒心梦玉发布了新的文献求助10
8秒前
科研通AI6应助Joy_Huizhen采纳,获得10
8秒前
SciGPT应助遇晴采纳,获得10
8秒前
dddd发布了新的文献求助30
9秒前
9秒前
科研牛马发布了新的文献求助10
9秒前
10秒前
项海目龙发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
10086wm发布了新的文献求助10
12秒前
橙子完成签到,获得积分10
12秒前
飞儿医生完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5433429
求助须知:如何正确求助?哪些是违规求助? 4545833
关于积分的说明 14199118
捐赠科研通 4465596
什么是DOI,文献DOI怎么找? 2447613
邀请新用户注册赠送积分活动 1438748
关于科研通互助平台的介绍 1415765