Behavioral Classification of Sequential Neural Activity Using Time Varying Recurrent Neural Networks

人工神经网络 人工智能 计算机科学 模式识别(心理学) 神经科学 心理学
作者
Yongxu Zhang,Catalin Mitelut,David J. Arpin,David E. Vaillancourt,Timothy H. Murphy,Shreya Saxena
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:33: 2638-2649
标识
DOI:10.1109/tnsre.2025.3586175
摘要

Shifts in data distribution across time can strongly affect early classification of time-series data. When decoding behavior from neural activity, early detection of behavior may help in devising corrective neural stimulation before the onset of behavior. Recurrent neural networks are common models for sequence data. However, standard recurrent neural networks are not able to handle data with temporal distributional shifts to guarantee robust classification across time. To enable the network to utilize all temporal features of the neural input data, and to enhance the memory of recurrent neural networks, this paper proposes a novel approach: recurrent neural networks with time-varying weights, here termed Time-varying recurrent neural networks. These models are able to not only predict the class of the time-sequence correctly, but also lead to accurate classification earlier in the sequence than standard recurrent neural networks, while also stabilizing gradient dynamics. This paper focuses on early sequential classification of spatially distributed neural activity across time using Time-varying recurrent neural networks applied to a variety of neural data from mice and humans, as subjects perform motor tasks. Time-varying recurrent neural networks detect self-initiated lever-pull behavior up to 6 seconds before behavior onset-3 seconds earlier than standard recurrent neural networks. Finally, this paper explored the contribution of different brain regions on behavior classification using SHapley Additive exPlanation value, and found that the somatosensory and premotor regions play a large role in behavioral classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
无花果应助笑点低的初瑶采纳,获得10
1秒前
jeonghan发布了新的文献求助10
1秒前
2秒前
邢文瑞发布了新的文献求助10
2秒前
香蕉觅云应助lllllll采纳,获得10
3秒前
nolan完成签到 ,获得积分10
3秒前
3秒前
潇洒的山兰完成签到,获得积分10
4秒前
23发布了新的文献求助10
4秒前
5秒前
jscr完成签到,获得积分10
6秒前
6秒前
汉堡包应助Amyandjohn采纳,获得10
7秒前
7秒前
Sunny完成签到 ,获得积分10
7秒前
Jasper应助红叶采纳,获得10
8秒前
9秒前
9秒前
lenaimiao发布了新的文献求助10
9秒前
笑点低的初瑶完成签到,获得积分10
9秒前
光军完成签到,获得积分10
10秒前
boytoa完成签到,获得积分10
11秒前
万能图书馆应助jeonghan采纳,获得10
11秒前
开朗的紫萍完成签到,获得积分10
11秒前
Lucas应助迷你的蜜蜂采纳,获得10
11秒前
khc发布了新的文献求助10
12秒前
cx发布了新的文献求助10
12秒前
shanshan__完成签到,获得积分10
13秒前
轻松盼雁完成签到,获得积分10
13秒前
Cynthia发布了新的文献求助10
13秒前
14秒前
15秒前
15秒前
StuXuhao发布了新的文献求助10
16秒前
Kyrene完成签到,获得积分10
17秒前
18秒前
20秒前
sstargazer发布了新的文献求助10
20秒前
俭朴凌青发布了新的文献求助10
20秒前
高分求助中
Comprehensive Chirality Second Edition 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4978255
求助须知:如何正确求助?哪些是违规求助? 4231265
关于积分的说明 13178938
捐赠科研通 4022032
什么是DOI,文献DOI怎么找? 2200547
邀请新用户注册赠送积分活动 1213008
关于科研通互助平台的介绍 1129272