Restoration of missing structural health monitoring data using spatiotemporal graph attention networks

计算机科学 数据挖掘 图形 缺少数据 传感器融合 结构健康监测 无线传感器网络 同种类的 桥(图论) 注意力网络 模式识别(心理学) 人工智能 机器学习 工程类 理论计算机科学 数学 医学 组合数学 结构工程 内科学 计算机网络
作者
Jin Niu,Shunlong Li,Li Zhonglong
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:21 (5): 2408-2419 被引量:1
标识
DOI:10.1177/14759217211056832
摘要

For structural health monitoring systems with many low-cost sensors, missing data caused by sensor faults, power supply interruptions and data transmission errors are almost inevitable, significantly affecting structural diagnosis and evaluation. Considering the inherent spatial and temporal correlations in the sensor network, this study proposes a spatiotemporal graph attention network for restoration of missing data. The proposed model was stacked with a graph convolutional layer and several spatiotemporal blocks composed of spatial and temporal layers. The monitoring data of normal sensors were first mapped to all sensors through the graph convolutional layer, and attention mechanisms were used in the spatiotemporal blocks to model the spatial dependencies of sensors and the temporal dependencies of time steps, respectively. The extracted spatiotemporal features were assembled through a fully connected layer to reconstruct the missing signals. In this study, both homogeneous and heterogeneous monitoring items were used to calculate the spatial attention coefficients. The data restoration accuracy with and without the multi-source data fusion was discussed. Application on a long-span cable-stayed bridge to restore missing cable forces demonstrates that spatiotemporal attention modelling can achieve satisfactory restoring accuracy without any prior analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Amy发布了新的文献求助10
2秒前
2秒前
LIBALA发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
超级盼海发布了新的文献求助10
5秒前
5秒前
5秒前
牛牛发布了新的文献求助10
6秒前
稳定上分发布了新的文献求助30
6秒前
6秒前
fy发布了新的文献求助10
6秒前
LIIII完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
曹7完成签到,获得积分20
9秒前
嘿咻嘿咻完成签到,获得积分10
9秒前
QQ糖完成签到,获得积分10
9秒前
10秒前
11秒前
爆米花应助哈哈采纳,获得10
11秒前
11秒前
mike发布了新的文献求助10
11秒前
Yuuki完成签到,获得积分10
12秒前
gggqh发布了新的文献求助10
12秒前
淡淡的雪完成签到,获得积分10
12秒前
XD824发布了新的文献求助10
12秒前
充电宝应助盖世汤圆采纳,获得10
12秒前
安白发布了新的文献求助10
12秒前
勤劳的小刺猬完成签到,获得积分10
12秒前
13秒前
13秒前
fy完成签到,获得积分10
13秒前
nuoyefenfei完成签到,获得积分10
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806134
求助须知:如何正确求助?哪些是违规求助? 3350986
关于积分的说明 10352268
捐赠科研通 3066831
什么是DOI,文献DOI怎么找? 1684153
邀请新用户注册赠送积分活动 809346
科研通“疑难数据库(出版商)”最低求助积分说明 765463