离群值
化学
皮尔逊积矩相关系数
模式识别(心理学)
相关性
色谱法
人工智能
计算机科学
统计
数学
几何学
作者
Bhaskaran David Prakash,Kesavan Esuvaranathan,Paul C. Ho,Kishore Kumar Pasikanti,Eric Chun Yong Chan,Chun Wei Yap
出处
期刊:Analyst
[The Royal Society of Chemistry]
日期:2013-01-01
卷期号:138 (10): 2883-2883
被引量:1
摘要
A fully automated and computationally efficient Pearson's correlation change classification (APC3) approach is proposed and shown to have overall comparable performance with both an average accuracy and an average AUC of 0.89 ± 0.08 but is 3.9 to 7 times faster, easier to use and have low outlier susceptibility in contrast to other dimensional reduction and classification combinations using only the total ion chromatogram (TIC) intensities of GC/MS data. The use of only the TIC permits the possible application of APC3 to other metabonomic data such as LC/MS TICs or NMR spectra. A RapidMiner implementation is available for download at http://padel.nus.edu.sg/software/padelapc3.
科研通智能强力驱动
Strongly Powered by AbleSci AI