材料科学
纳米技术
微流控
自愈
制作
医学
病理
替代医学
作者
Qing Li,Zhi Xu,Xiafang Du,Xiang‐Yun Du,Hengyang Cheng,Guan Wu,Cai‐Feng Wang,Zhanfeng Cui,Su Chen
标识
DOI:10.1021/acs.chemmater.8b03579
摘要
Multistructural and versatile fibers have attracted enormous interests in various potential applications ranging from tissue engineering and cells to sensors. However, the controllable fabrication and nonwoven assembly of fibers remain a challenge. Here, we developed a novel strategy to in situ fabricate supramolecular hydrogel fibers via microfluidic spinning technology where self-healing fibers can be nonwoven assembled into fabrics through noncovalent interactions (host–guest interactions). We utilized β-cyclodextrin as the host molecule and N-vinylimidazole as the guest molecule to achieve self-healing supramolecular hydrogel fibers. Through design of different microreactors, the beaded, cylindrical, and knotted structure in fibers were achieved. Additionally, we constructed multidimensional (2D plane, 3D bulk, and 3D spiral textile) materials by using self-healing fibers as building blocks. In virtue of the host–guest assembly, the as-fabricated fabric exhibits high flexibility with high strength and long-term stretching behavior. From a practical standpoint, we employed the hydrogel fibers to construct a self-healing conductive composite wire and a plane-shaped supercapacitor, which could power light-emitting diodes. Our main aim is to clarify the paramount role of designing various fabrics through noncovalent interactions based on the interfibrillar self-healing feature, which gives a new insight into the facile fabrication of fabrics as well as the next-generation wearable textiles.
科研通智能强力驱动
Strongly Powered by AbleSci AI