清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Enhancing transfer performance across datasets for brain-computer interfaces using a combination of alignment strategies and adaptive batch normalization

计算机科学 预处理器 学习迁移 人工智能 数据预处理 一般化 规范化(社会学) 机器学习 模式识别(心理学) 数据挖掘 数学 人类学 数学分析 社会学
作者
Lichao Xu,Minpeng Xu,Zheng Ma,Kun Wang,Tzyy-Ping Jung,Dong Ming
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (4): 0460e5-0460e5 被引量:14
标识
DOI:10.1088/1741-2552/ac1ed2
摘要

Abstract Objective . Recently, transfer learning (TL) and deep learning (DL) have been introduced to solve intra- and inter-subject variability problems in brain-computer interfaces (BCIs). However, current TL and DL algorithms are usually validated within a single dataset, assuming that data of the test subjects are acquired under the same condition as that of training (source) subjects. This assumption is generally violated in practice because of different acquisition systems and experimental settings across studies and datasets. Thus, the generalization ability of these algorithms needs further validations in a cross-dataset scenario, which is closer to the actual situation. This study compared the transfer performance of pre-trained deep-learning models with different preprocessing strategies in a cross-dataset scenario. Approach . This study used four publicly available motor imagery datasets, each was successively selected as a source dataset, and the others were used as target datasets. EEGNet and ShallowConvNet with four preprocessing strategies, namely channel normalization, trial normalization, Euclidean alignment, and Riemannian alignment, were trained with the source dataset. The transfer performance of pre-trained models was validated on the target datasets. This study also used adaptive batch normalization (AdaBN) for reducing interval covariate shift across datasets. This study compared the transfer performance of using the four preprocessing strategies and that of a baseline approach based on manifold embedded knowledge transfer (MEKT). This study also explored the possibility and performance of fusing MEKT and EEGNet. Main results . The results show that DL models with alignment strategies had significantly better transfer performance than the other two preprocessing strategies. As an unsupervised domain adaptation method, AdaBN could also significantly improve the transfer performance of DL models. The transfer performance of DL models that combined AdaBN and alignment strategies significantly outperformed MEKT. Moreover, the generalizability of EEGNet models that combined AdaBN and alignment strategies could be further improved via the domain adaptation step in MEKT, achieving the best generalization ability among multiple datasets (BNCI2014001: 0.788, PhysionetMI: 0.679, Weibo2014: 0.753, Cho2017: 0.650). Significance . The combination of alignment strategies and AdaBN could easily improve the generalizability of DL models without fine-tuning. This study may provide new insights into the design of transfer neural networks for BCIs by separating source and target batch normalization layers in the domain adaptation process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪山飞龙发布了新的文献求助20
3秒前
随心所欲完成签到 ,获得积分10
5秒前
雪山飞龙发布了新的文献求助20
21秒前
oldchen完成签到 ,获得积分10
26秒前
26秒前
天亮了吗完成签到,获得积分0
37秒前
南极的企鹅365完成签到,获得积分10
39秒前
无花果应助科研通管家采纳,获得10
46秒前
cosine发布了新的文献求助10
52秒前
yingliusd完成签到,获得积分10
57秒前
ChatGPT发布了新的文献求助10
58秒前
yanmh完成签到,获得积分10
1分钟前
雪山飞龙发布了新的文献求助10
1分钟前
ChatGPT发布了新的文献求助10
1分钟前
widesky777完成签到 ,获得积分0
1分钟前
幽默滑板完成签到,获得积分10
1分钟前
蝎子莱莱xth完成签到,获得积分10
1分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
1分钟前
Square完成签到,获得积分10
1分钟前
1分钟前
DJ_Tokyo完成签到,获得积分0
1分钟前
ChatGPT完成签到,获得积分10
1分钟前
Youlu发布了新的文献求助10
1分钟前
jlwang发布了新的文献求助10
1分钟前
Youlu完成签到,获得积分10
1分钟前
LT完成签到 ,获得积分0
2分钟前
火山大王完成签到,获得积分20
2分钟前
笨笨青筠完成签到 ,获得积分10
2分钟前
天天下雨完成签到 ,获得积分10
2分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
伊yan完成签到 ,获得积分10
2分钟前
CNAxiaozhu7完成签到,获得积分10
2分钟前
虚拟莫茗完成签到 ,获得积分10
3分钟前
胡国伦完成签到 ,获得积分10
4分钟前
BINBIN完成签到 ,获得积分10
4分钟前
hyl-tcm完成签到 ,获得积分10
4分钟前
John完成签到 ,获得积分10
4分钟前
Ava应助Runostp采纳,获得10
4分钟前
王洋洋完成签到 ,获得积分10
4分钟前
秋半梦完成签到 ,获得积分10
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3931115
求助须知:如何正确求助?哪些是违规求助? 3476051
关于积分的说明 10989040
捐赠科研通 3206321
什么是DOI,文献DOI怎么找? 1771938
邀请新用户注册赠送积分活动 859266
科研通“疑难数据库(出版商)”最低求助积分说明 797064