Phenotype Network and Brain Structural Covariance Network of Major Depression

神经认知 协方差 表型 一致性 神经科学 心理学 生物 认知 遗传学 数学 生物信息学 基因 统计
作者
Je‐Yeon Yun,Yong‐Ku Kim
出处
期刊:Advances in Experimental Medicine and Biology [Springer Nature]
卷期号:: 3-18 被引量:7
标识
DOI:10.1007/978-981-33-6044-0_1
摘要

Phenotype networks enable clinicians to elucidate the patterns of coexistence and interactions among the clinical symptoms, negative cognitive styles , neurocognitive performance, and environmental factors in major depressive disorder (MDD). Results of phenotype network approach could be used in finding the target symptoms as these are tightly connected or associated with many other phenomena within the phenotype network of MDD specifically when comorbid psychiatric disorder(s) is/are present. Further, by comparing the differential patterns of phenotype networks before and after the treatment, changing or enduring patterns of associations among the clinical phenomena in MDD have been deciphered.Brain structural covariance networks describe the inter-regional co-varying patterns of brain morphologies, and overlapping findings have been reported between the brain structural covariance network and coordinated trajectories of brain development and maturation. Intra-individual brain structural covariance illustrates the degrees of similarities among the different brain regions for how much the values of brain morphological features are deviated from those of healthy controls. Inter-individual brain structural covariance reflects the degrees of concordance among the different brain regions for the inter-individual distribution of brain morphologic values. Estimation of the graph metrics for these brain structural covariance networks uncovers the organizational profile of brain morphological variations in the whole brain and the regional distribution of brain hubs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助BYQ采纳,获得10
刚刚
研友_8Y26PL完成签到,获得积分10
1秒前
2秒前
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
3秒前
wennuan0913完成签到 ,获得积分10
7秒前
元谷雪发布了新的文献求助10
8秒前
眼睛大的傲菡完成签到,获得积分10
10秒前
禅花游鱼完成签到,获得积分10
11秒前
尊敬不斜完成签到,获得积分10
11秒前
KouZL完成签到,获得积分10
12秒前
有魅力的臻完成签到,获得积分10
12秒前
共享精神应助小香香采纳,获得10
13秒前
sx发布了新的文献求助30
14秒前
15秒前
可爱的函函应助AXIANGGE采纳,获得10
15秒前
16秒前
wanci应助senta采纳,获得10
17秒前
LeePsy完成签到,获得积分10
17秒前
云fly完成签到,获得积分10
18秒前
橘猫完成签到 ,获得积分10
18秒前
19秒前
20秒前
EasonLi发布了新的文献求助10
21秒前
陈花蕾完成签到 ,获得积分10
22秒前
22秒前
24秒前
24秒前
24秒前
mm完成签到 ,获得积分10
26秒前
29秒前
sysm发布了新的文献求助20
30秒前
30秒前
33秒前
今后应助小鹿5460采纳,获得200
33秒前
BYQ发布了新的文献求助10
34秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831507
求助须知:如何正确求助?哪些是违规求助? 3373721
关于积分的说明 10481076
捐赠科研通 3093686
什么是DOI,文献DOI怎么找? 1702910
邀请新用户注册赠送积分活动 819201
科研通“疑难数据库(出版商)”最低求助积分说明 771307