Identification of lipid metabolism-related genes as prognostic indicators in papillary thyroid cancer

列线图 癌变 基因表达谱 比例危险模型 基因签名 生物 肿瘤科 基因 甲状腺乳突癌 微阵列分析技术 乳腺癌 微阵列 接收机工作特性 单变量 生存分析 基因表达 甲状腺癌 内科学 癌症研究 医学 癌症 多元统计 遗传学 统计 数学
作者
Shishuai Wen,Yi Luo,Weili Wu,Tingting Zhang,Yichen Yang,Qinghai Ji,Yijun Wu,Ruihan Shi,Ben Ma,Ming Xu,Ning Qu
出处
期刊:Acta Biochimica et Biophysica Sinica [Oxford University Press]
卷期号:53 (12): 1579-1589 被引量:22
标识
DOI:10.1093/abbs/gmab145
摘要

Lipid metabolism plays important roles not only in the structural basis and energy supply of healthy cells but also in the oncogenesis and progression of cancers. In this study, we investigated the prognostic value of lipid metabolism-related genes in papillary thyroid cancer (PTC). The recurrence predictive gene signature was developed and internally and externally validated based on PTC datasets including The Cancer Genome Atlas (TCGA) and GSE33630 datasets. Univariate, LASSO, and multivariate Cox regression analysis were applied to assess prognostic genes and build the prognostic gene signature. The expression profiles of prognostic genes were further determined by immunohistochemistry of tissue microarray using in-house cohorts, which enrolled 97 patients. Kaplan-Meier curve, time-dependent receiver operating characteristic curve, nomogram, and decision curve analyses were used to assess the performance of the gene signature. We identified four recurrence-related genes, PDZK1IP1, TMC3, LRP2 and KCNJ13, and established a four-gene signature recurrence risk model. The expression profiles of the four genes in the TCGA and in-house cohort indicated that stage T1/T2 PTC and locally advanced PTC exhibit notable associations not only with clinicopathological parameters but also with recurrence. Calibration analysis plots indicate the excellent predictive performance of the prognostic nomogram constructed based on the gene signature. Single-sample gene set enrichment analysis showed that high-risk cases exhibit changes in several important tumorigenesis-related pathways, such as the intestinal immune network and the p53 and Hedgehog signaling pathways. Our results indicate that lipid metabolism-related gene profiling represents a potential marker for prognosis and treatment decisions for PTC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助Frank采纳,获得20
1秒前
毛通完成签到,获得积分10
1秒前
月影青松完成签到 ,获得积分10
2秒前
yf1987bob发布了新的文献求助10
3秒前
1234发布了新的文献求助10
4秒前
专注背包完成签到,获得积分10
4秒前
neil完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
孤独超短裙完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
所所应助沅沅采纳,获得10
7秒前
8秒前
8秒前
科研通AI5应助1234采纳,获得10
10秒前
13秒前
lpjianai168完成签到,获得积分10
13秒前
jiangsisi发布了新的文献求助10
14秒前
zxy完成签到,获得积分20
15秒前
16秒前
17秒前
所所应助苗条小霸王采纳,获得10
17秒前
友好小刺猬完成签到,获得积分10
19秒前
123456发布了新的文献求助10
20秒前
独特的绿蝶完成签到,获得积分10
20秒前
友好访蕊发布了新的文献求助10
20秒前
mingming1028发布了新的文献求助10
21秒前
科研通AI6应助猫南北采纳,获得10
21秒前
22秒前
浮游应助吕凯良采纳,获得10
24秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
26秒前
小杨发布了新的文献求助30
27秒前
27秒前
polar_star发布了新的文献求助10
28秒前
JamesPei应助友好访蕊采纳,获得10
28秒前
小沈完成签到,获得积分10
28秒前
可爱的冷霜完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5059797
求助须知:如何正确求助?哪些是违规求助? 4284427
关于积分的说明 13351250
捐赠科研通 4101902
什么是DOI,文献DOI怎么找? 2245851
邀请新用户注册赠送积分活动 1251625
关于科研通互助平台的介绍 1182320