清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Physics-Informed Deep Learning for Computational Elastodynamics without Labeled Data

有限元法 偏微分方程 计算机科学 物理定律 突出 应用数学 常微分方程 数学 人工神经网络 人工智能 物理 微分方程 数学分析 量子力学 热力学
作者
Chengping Rao,Hao Sun,Yang Liu
出处
期刊:Journal of Engineering Mechanics-asce [American Society of Civil Engineers]
卷期号:147 (8) 被引量:241
标识
DOI:10.1061/(asce)em.1943-7889.0001947
摘要

Numerical methods such as finite element have been flourishing in the past decades for modeling solid mechanics problems via solving governing partial differential equations (PDEs). A salient aspect that distinguishes these numerical methods is how they approximate the physical fields of interest. Physics-informed deep learning (PIDL) is a novel approach developed in recent years for modeling PDE solutions and shows promise to solve computational mechanics problems without using any labeled data (e.g., measurement data is unavailable). The philosophy behind it is to approximate the quantity of interest (e.g., PDE solution variables) by a deep neural network (DNN) and embed the physical law to regularize the network. To this end, training the network is equivalent to minimization of a well-designed loss function that contains the residuals of the governing PDEs as well as initial/boundary conditions (I/BCs). In this paper, we present a physics-informed neural network (PINN) with mixed-variable output to model elastodynamics problems without resort to the labeled data, in which the I/BCs are forcibly imposed. In particular, both the displacement and stress components are taken as the DNN output, inspired by the hybrid finite-element analysis, which largely improves the accuracy and the trainability of the network. Since the conventional PINN framework augments all the residual loss components in a soft manner with Lagrange multipliers, the weakly imposed I/BCs may not be well satisfied especially when complex I/BCs are present. To overcome this issue, a composite scheme of DNNs is established based on multiple single DNNs such that the I/BCs can be satisfied forcibly in a forcible manner. The proposed PINN framework is demonstrated on several numerical elasticity examples with different I/BCs, including both static and dynamic problems as well as wave propagation in truncated domains. Results show the promise of PINN in the context of computational mechanics applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
8秒前
朱成豪发布了新的文献求助10
11秒前
alanbike完成签到,获得积分10
11秒前
gwbk完成签到,获得积分10
14秒前
xiangrikui完成签到,获得积分0
16秒前
zxy完成签到 ,获得积分10
16秒前
xiangrikui发布了新的文献求助10
19秒前
寒战完成签到 ,获得积分10
24秒前
SYLH应助WEN采纳,获得10
28秒前
WEN完成签到,获得积分10
44秒前
胡杨柳完成签到,获得积分10
58秒前
小白菜完成签到 ,获得积分10
1分钟前
个性松完成签到 ,获得积分10
1分钟前
Wei完成签到 ,获得积分10
1分钟前
断章完成签到 ,获得积分10
1分钟前
神勇的天问完成签到 ,获得积分10
1分钟前
荀万声完成签到 ,获得积分10
1分钟前
lalala完成签到 ,获得积分10
2分钟前
cdercder完成签到,获得积分0
2分钟前
孟寐以求完成签到 ,获得积分10
2分钟前
2分钟前
苏木完成签到 ,获得积分10
2分钟前
醉熏的千柳完成签到 ,获得积分10
2分钟前
故意的书本完成签到 ,获得积分10
2分钟前
黄迪迪完成签到 ,获得积分10
2分钟前
cdercder应助科研通管家采纳,获得20
2分钟前
周小鱼完成签到,获得积分10
2分钟前
悄悄拔尖儿完成签到 ,获得积分10
3分钟前
1234完成签到 ,获得积分10
3分钟前
Kevin完成签到,获得积分10
3分钟前
小萌完成签到 ,获得积分10
3分钟前
lilaccalla完成签到 ,获得积分10
3分钟前
3分钟前
活力的珊完成签到 ,获得积分10
3分钟前
牛奶面包完成签到 ,获得积分10
3分钟前
求助完成签到,获得积分10
3分钟前
默默的筝完成签到 ,获得积分10
3分钟前
4分钟前
吴英慧发布了新的文献求助30
4分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833879
求助须知:如何正确求助?哪些是违规求助? 3376330
关于积分的说明 10492623
捐赠科研通 3095843
什么是DOI,文献DOI怎么找? 1704723
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859