A Comprehensive Review of Computational Methods For Drug-Drug Interaction Detection

计算机科学 药物警戒 机器学习 药物与药物的相互作用 药品 人工智能 数据科学 数据挖掘 医学 药理学
作者
Yang Qiu,Yang Zhang,Yifan Deng,Shichao Liu,Wen Zhang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (4): 1968-1985 被引量:69
标识
DOI:10.1109/tcbb.2021.3081268
摘要

The detection of drug-drug interactions (DDIs) is a crucial task for drug safety surveillance, which provides effective and safe co-prescriptions of multiple drugs. Since laboratory researches are often complicated, costly and time-consuming, it's urgent to develop computational approaches to detect drug-drug interactions. In this paper, we conduct a comprehensive review of state-of-the-art computational methods falling into three categories: literature-based extraction methods, machine learning-based prediction methods and pharmacovigilance-based data mining methods. Literature-based extraction methods detect DDIs from published literature using natural language processing techniques; machine learning-based prediction methods build prediction models based on the known DDIs in databases and predict novel ones; pharmacovigilance-based data mining methods usually apply statistical techniques on various electronic data to detect drug-drug interaction signals. We first present the taxonomy of drug-drug interaction detection methods and provide the outlines of three categories of methods. Afterwards, we respectively introduce research backgrounds and data sources of three categories, and illustrate their representative approaches as well as evaluation metrics. Finally, we discuss the current challenges of existing methods and highlight potential opportunities for future directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安徽梁朝伟完成签到,获得积分10
1秒前
1秒前
踏实的洋葱完成签到,获得积分10
2秒前
研友_VZG7GZ应助QJL采纳,获得10
2秒前
3秒前
9秒前
科研助手6应助hsialy采纳,获得10
13秒前
13秒前
13秒前
芒果完成签到 ,获得积分10
14秒前
坚强的纸飞机完成签到,获得积分10
15秒前
Mr杜完成签到,获得积分10
16秒前
墨丘利的哀伤完成签到,获得积分10
16秒前
杨婷发布了新的文献求助30
16秒前
刘玲完成签到 ,获得积分10
17秒前
17秒前
孙燕应助张秋贤采纳,获得10
17秒前
xm发布了新的文献求助10
17秒前
18秒前
王忘汪完成签到 ,获得积分10
20秒前
25秒前
26秒前
百里完成签到,获得积分10
31秒前
31秒前
ran发布了新的文献求助10
32秒前
gengfu完成签到,获得积分10
32秒前
SciGPT应助杨婷采纳,获得10
33秒前
科研通AI5应助钰宁采纳,获得30
33秒前
湖以发布了新的文献求助10
33秒前
Ning_完成签到 ,获得积分10
35秒前
JamesPei应助zhl采纳,获得10
35秒前
笑点低中心完成签到,获得积分10
35秒前
Aprial完成签到,获得积分10
36秒前
钰宁发布了新的文献求助10
37秒前
封宇完成签到,获得积分10
37秒前
41秒前
快乐科研发布了新的文献求助10
41秒前
42秒前
44秒前
繁荣的青旋完成签到 ,获得积分10
44秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843681
求助须知:如何正确求助?哪些是违规求助? 3386006
关于积分的说明 10543429
捐赠科研通 3106797
什么是DOI,文献DOI怎么找? 1711162
邀请新用户注册赠送积分活动 823937
科研通“疑难数据库(出版商)”最低求助积分说明 774390