纳米流体学
纳米技术
材料科学
离子通道
人工细胞
膜
离子
纳米孔
计算机科学
化学
生物化学
受体
有机化学
作者
Zhen Zhang,Xiaodong Huang,Yongchao Qian,Weipeng Chen,Liping Wen,Lei Jiang
标识
DOI:10.1002/adma.201904351
摘要
Abstract Biological ion channels and ion pumps with intricate ion transport functions widely exist in living organisms and play irreplaceable roles in almost all physiological functions. Nanofluidics provides exciting opportunities to mimic these working processes, which not only helps understand ion transport in biological systems but also paves the way for the applications of artificial devices in many valuable areas. Recent progress in the engineering of smart nanofluidic systems for artificial ion channels and ion pumps is summarized. The artificial systems range from chemically and structurally diverse lipid‐membrane‐based nanopores to robust and scalable solid‐state nanopores. A generic strategy of gate location design is proposed. The single‐pore‐based platform concept can be rationally extended into multichannel membrane systems and shows unprecedented potential in many application areas, such as single‐molecule analysis, smart mass delivery, and energy conversion. Finally, some present underpinning issues that need to be addressed are discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI