Topology Design With Conditional Generative Adversarial Networks

计算机科学 生成设计 杠杆(统计) 网络拓扑 深度学习 人工智能 生成语法 卷积神经网络 理论计算机科学 维数之咒 拓扑优化 发电机(电路理论) 机器学习 有限元法 工程类 物理 功率(物理) 公制(单位) 操作系统 结构工程 量子力学 运营管理
作者
Conner Sharpe,Carolyn Conner Seepersad
标识
DOI:10.1115/detc2019-97833
摘要

Abstract Deep convolutional neural networks have gained significant traction as effective approaches for developing detailed but compact representations of complex structured data. Generative networks in particular have become popular for their ability to mimic data distributions and allow further exploration of them. This attribute can be utilized in engineering design domains, in which the data structures of finite element meshes for analyzing potential designs are well suited to the deep convolutional network approaches that are being developed at a rapid pace in the field of image processing. This paper explores the use of conditional generative adversarial networks (cGANs) as a means of generating a compact latent representation of structures resulting from classical topology optimization techniques. The constraints and contextual factors of a design problem, such as mass fraction, material type, and load location, can then be specified as input conditions to generate potential topologies in a directed fashion. The trained network can be used to aid concept generation, such that engineers can explore a variety of designs relevant to the problem at hand with ease. The latent variables of the generator can also be used as design parameters, and the low dimensionality enables tractable computational design without analytical sensitivities. This paper demonstrates these capabilities and discusses avenues for further developments that would enable the engineering design community to further leverage generative machine learning techniques to their full potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喏晨完成签到 ,获得积分10
刚刚
李健应助意而往南飞采纳,获得10
刚刚
善学以致用应助log采纳,获得10
刚刚
ni发布了新的文献求助10
1秒前
阿飘应助EVE11采纳,获得10
1秒前
Mandy发布了新的文献求助30
1秒前
Mstone完成签到,获得积分20
1秒前
Hello应助cc采纳,获得10
2秒前
2秒前
彳亍1117应助majf采纳,获得10
3秒前
Akim应助王豆豆采纳,获得10
3秒前
小珍珠完成签到 ,获得积分10
3秒前
科研通AI5应助柯岩任采纳,获得10
4秒前
Orange应助ni采纳,获得10
4秒前
奋斗的梦松完成签到,获得积分20
4秒前
4秒前
南希发布了新的文献求助10
4秒前
香蕉觅云应助明理的凌旋采纳,获得10
5秒前
5秒前
5秒前
zino发布了新的文献求助10
5秒前
5秒前
Monica2011发布了新的文献求助10
6秒前
刘蓓蓓发布了新的文献求助10
6秒前
6秒前
不安慕蕊完成签到,获得积分10
7秒前
8秒前
mg应助sss采纳,获得10
8秒前
科研通AI5应助dobby采纳,获得10
8秒前
8秒前
8秒前
既然寄了,那就开摆完成签到 ,获得积分10
9秒前
9秒前
CipherSage应助mumu采纳,获得30
9秒前
喵喵喵发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
12秒前
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Single Element Semiconductors: Properties and Devices 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
English language teaching materials : theory and practice 200
Parallel Optimization 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835549
求助须知:如何正确求助?哪些是违规求助? 3377872
关于积分的说明 10500941
捐赠科研通 3097454
什么是DOI,文献DOI怎么找? 1705830
邀请新用户注册赠送积分活动 820717
科研通“疑难数据库(出版商)”最低求助积分说明 772219