Learning from electronic health records across multiple sites: A communication-efficient and privacy-preserving distributed algorithm

估计员 计算机科学 逻辑回归 算法 统计 估计 数学 机器学习 经济 管理
作者
Rui Duan,Mary Regina Boland,Zixuan Liu,Yue Liu,Howard H. Chang,Hua Xu,Haitao Chu,Christopher H. Schmid,Christopher B. Forrest,John H. Holmes,Martijn J. Schuemie,Jesse A. Berlin,Jason H. Moore,Yong Chen
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:27 (3): 376-385 被引量:57
标识
DOI:10.1093/jamia/ocz199
摘要

Abstract Objectives We propose a one-shot, privacy-preserving distributed algorithm to perform logistic regression (ODAL) across multiple clinical sites. Materials and Methods ODAL effectively utilizes the information from the local site (where the patient-level data are accessible) and incorporates the first-order (ODAL1) and second-order (ODAL2) gradients of the likelihood function from other sites to construct an estimator without requiring iterative communication across sites or transferring patient-level data. We evaluated ODAL via extensive simulation studies and an application to a dataset from the University of Pennsylvania Health System. The estimation accuracy was evaluated by comparing it with the estimator based on the combined individual participant data or pooled data (ie, gold standard). Results Our simulation studies revealed that the relative estimation bias of ODAL1 compared with the pooled estimates was <3%, and the ratio of standard errors was <1.25 for all scenarios. ODAL2 achieved higher accuracy (with relative bias <0.1% and ratio of standard errors <1.05). In real data analysis, we investigated the associations of 100 medications with fetal loss during pregnancy. We found that ODAL1 provided estimates with relative bias <10% for 85% of medications, and ODAL2 has relative bias <10% for 99% of medications. For communication cost, ODAL1 requires transferring p numbers from each site to the local site and ODAL2 requires transferring (p×p+p) numbers from each site to the local site, where p is the number of parameters in the regression model. Conclusions This study demonstrates that ODAL is privacy-preserving and communication-efficient with small bias and high statistical efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
fengpu完成签到,获得积分10
1秒前
1秒前
想吃芝士焗饭完成签到 ,获得积分10
1秒前
爱笑如凡完成签到,获得积分10
1秒前
1秒前
科研通AI5应助jiang采纳,获得10
1秒前
2秒前
2秒前
ii完成签到,获得积分10
2秒前
JamesPei应助hwezhu采纳,获得10
2秒前
温暖元柏发布了新的文献求助10
3秒前
songjin111111完成签到,获得积分10
3秒前
冰魂应助吴天姿采纳,获得10
3秒前
威武巧曼发布了新的文献求助10
3秒前
G浅浅发布了新的文献求助10
3秒前
隐形曼青应助mayberichard采纳,获得10
4秒前
梅花K发布了新的文献求助10
4秒前
4秒前
4秒前
leslieo3o发布了新的文献求助10
5秒前
xhs12138发布了新的文献求助10
5秒前
瞿寒完成签到,获得积分10
5秒前
6秒前
贝果帮发布了新的文献求助10
6秒前
史迪仔完成签到,获得积分10
6秒前
Ava应助腌黄瓜女士采纳,获得10
6秒前
zzz发布了新的文献求助10
6秒前
zwip_xes发布了新的文献求助10
7秒前
无心的鬼神完成签到,获得积分10
7秒前
7秒前
7秒前
Elfmast完成签到,获得积分10
7秒前
7秒前
东华帝君完成签到,获得积分10
7秒前
7秒前
sllytn完成签到,获得积分10
8秒前
皮皮发布了新的文献求助10
8秒前
9秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Cardiopulmonary Bypass 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837986
求助须知:如何正确求助?哪些是违规求助? 3380201
关于积分的说明 10512925
捐赠科研通 3099817
什么是DOI,文献DOI怎么找? 1707224
邀请新用户注册赠送积分活动 821558
科研通“疑难数据库(出版商)”最低求助积分说明 772717