Photocatalysis coupling hydrogen peroxide synthesis and in-situ radical transform for tetracycline degradation

光催化 原位 降级(电信) 催化作用 四环素 过氧化氢 化学 联轴节(管道) 光化学 材料科学 有机化学 计算机科学 冶金 电信 生物化学 抗生素
作者
Zaixiang Xu,Si-Yan Gong,Wenkai Ji,Shijie Zhang,Zhikang Bao,Zijiang Zhao,Zhongzhe Wei,Xing Zhong,Zhong-Ting Hu,Jianguo Wang
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:446: 137009-137009 被引量:23
标识
DOI:10.1016/j.cej.2022.137009
摘要

• A novel nanorod-like C 3 N 4 photocatalyst with alkali modification is synthesized. • TC degradation system namely in-situ H 2 O 2 generation/radical transform is built up. • H 2 O 2 generation is enhanced by consuming hole based on adsorbed organic molecules. • Mechanism on TC degradation system employed C 3 N 4 photocatalyst is elucidated. Although much effort has been put into hydrogen peroxide (H 2 O 2 ) synthesis, multifunctional catalytic systems suitable for in-situ H 2 O 2 utilization in the field have rarely been investigated. In this study, carbon nitride nanorod (GCN-Rod) is designed to couple H 2 O 2 generating and activation for efficient environment remediation. The limitation of the sluggish hole oxidation kinetics during the photocatalytic H 2 O 2 production is overcome by oxidation of electrostatically adsorbed contaminant molecules. Acid-activated carbon nitride nanorod binds a large number of protons onto the surface, forming an acidic micro-environment prone to protonating organic molecules into positively charged molecules and adsorbed on the negative zeta-potential catalyst surface for oxidation reactions. The in situ synthesized H 2 O 2 is confirmed to be the origin of reactive oxygen species by EPR and band position analysis. The photocatalytic tetracycline (10 ppm) degradation ability approaches approximately 100 % within 10 min under visible-light irradiation. Cycle tests also demonstrated sufficient stability. This work achieves a delicate coupling of H 2 O 2 production and in-situ utilization, which is sufficient for continuous pollutant degradation, expanding the catalyst design methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脆脆鲨完成签到 ,获得积分10
1秒前
1秒前
从容乌完成签到 ,获得积分10
2秒前
wanci应助安澜采纳,获得10
2秒前
3秒前
彬彬完成签到 ,获得积分10
4秒前
纯真雁菱完成签到,获得积分10
5秒前
自信谷冬完成签到,获得积分10
5秒前
8秒前
LQS完成签到,获得积分10
11秒前
xianyaoz完成签到 ,获得积分0
11秒前
back you up应助ZhuJune采纳,获得30
12秒前
12秒前
16秒前
TORCH发布了新的文献求助30
16秒前
含糊的笑卉完成签到 ,获得积分10
17秒前
Ava应助凉月采纳,获得10
18秒前
18秒前
三土有兀完成签到 ,获得积分10
19秒前
吃醋完成签到,获得积分10
22秒前
纪鹏飞发布了新的文献求助20
22秒前
超级涔完成签到 ,获得积分10
22秒前
谢富杰发布了新的文献求助10
23秒前
gu完成签到,获得积分10
24秒前
静默完成签到 ,获得积分10
24秒前
吴彦祖完成签到,获得积分10
24秒前
25秒前
庚123完成签到,获得积分10
25秒前
26秒前
卡卡罗特先森完成签到,获得积分10
26秒前
Auston_zhong应助sugar采纳,获得10
28秒前
丘比特应助王佳豪采纳,获得10
28秒前
稀饭发布了新的文献求助10
29秒前
伶俐耳机完成签到 ,获得积分10
29秒前
研友_Z1X6kn完成签到,获得积分10
30秒前
30秒前
30秒前
kin完成签到 ,获得积分10
31秒前
asymmetric糖完成签到,获得积分10
31秒前
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777834
求助须知:如何正确求助?哪些是违规求助? 3323349
关于积分的说明 10214106
捐赠科研通 3038590
什么是DOI,文献DOI怎么找? 1667553
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758290