Data Acquisition and Preparation for Dual-Reference Deep Learning of Image Super-Resolution

增采样 计算机科学 人工智能 计算机视觉 双三次插值 图像分辨率 过程(计算) 像素 图像质量 图像(数学) 模式识别(心理学) 操作系统 线性插值
作者
Yanhui Guo,Xiaolin Wu,Xiao Shu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 4393-4404 被引量:13
标识
DOI:10.1109/tip.2022.3184819
摘要

The performance of deep learning based image super-resolution (SR) methods depend on how accurately the paired low and high resolution images for training characterize the sampling process of real cameras. Low and high resolution (LR ∼ HR) image pairs synthesized by degradation models (e.g., bicubic downsampling) deviate from those in reality; thus the synthetically-trained DCNN SR models work disappointingly when being applied to real-world images. To address this issue, we propose a novel data acquisition process to shoot a large set of LR ∼ HR image pairs using real cameras. The images are displayed on an ultra-high quality screen and captured at different resolutions. The resulting LR ∼ HR image pairs can be aligned at very high sub-pixel precision by a novel spatial-frequency dual-domain registration method, and hence they provide more appropriate training data for the learning task of super-resolution. Moreover, the captured HR image and the original digital image offer dual references to strengthen supervised learning. Experimental results show that training a super-resolution DCNN by our LR ∼ HR dataset achieves higher image quality than training it by other datasets in the literature. Moreover, the proposed screen-capturing data collection process can be automated; it can be carried out for any target camera with ease and low cost, offering a practical way of tailoring the training of a DCNN SR model separately to each of the given cameras.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辉子完成签到,获得积分10
1秒前
1秒前
莉莉娅89完成签到,获得积分10
1秒前
haonanchen完成签到,获得积分10
1秒前
qiqi1111发布了新的文献求助10
1秒前
2秒前
脑洞疼应助潇潇鱼采纳,获得10
4秒前
杨华启发布了新的文献求助30
5秒前
6秒前
6秒前
hudaojiadecaigou完成签到,获得积分10
6秒前
6秒前
8秒前
fanyi发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
blackyu发布了新的文献求助10
11秒前
peekaboo发布了新的文献求助30
11秒前
Victoria发布了新的文献求助10
11秒前
li发布了新的文献求助10
11秒前
tang200928124发布了新的文献求助10
11秒前
崔福阔完成签到,获得积分10
11秒前
13秒前
13秒前
cumtlhy88完成签到 ,获得积分10
14秒前
15秒前
15秒前
leo发布了新的文献求助10
15秒前
16秒前
zhangjing发布了新的文献求助10
16秒前
欧阳静芙完成签到,获得积分10
17秒前
岘屿发布了新的文献求助10
17秒前
17秒前
潇潇鱼发布了新的文献求助10
17秒前
刘珍荣完成签到,获得积分10
18秒前
Yolo发布了新的文献求助10
19秒前
li完成签到,获得积分20
19秒前
20秒前
21秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5381822
求助须知:如何正确求助?哪些是违规求助? 4505100
关于积分的说明 14020357
捐赠科研通 4414451
什么是DOI,文献DOI怎么找? 2424877
邀请新用户注册赠送积分活动 1417772
关于科研通互助平台的介绍 1395611