Determination of ductile fracture properties of 16MND5 steels under varying constraint levels using machine learning methods

过度拟合 人工神经网络 断裂(地质) 辍学(神经网络) 约束(计算机辅助设计) 结构工程 外推法 试验数据 材料科学 计算机科学 试验装置 人工智能
作者
Xingyue Sun,Zheng Liu,Xin Wang,Xu Chen
出处
期刊:International Journal of Mechanical Sciences [Elsevier BV]
卷期号:: 107331-107331
标识
DOI:10.1016/j.ijmecsci.2022.107331
摘要

• ANN model was used to obtain ductile fracture behaviors of 16MND5 steel with various geometric dimensions . • An optimized strategy was proposed with artificial training set and dropout layer. • Through the artificial design, the total required training samples decreases 46.7%. • Dropout layer prevents the ANN model from over-fitting to ensure accuracy. • The interaction of 3D constraints and thermal aging on the ductile fracture behaviors were well reproduced. The current paper presents a machine learning method based on artificial neural network (ANN) model for the determination of ductile fracture properties of 16MND5 bainitic forging steel with various three-dimensional (3D) constraint conditions. A series of fracture test data with clamped single edge notched tension (SENT) specimens were used for model training and test. With the comprehensive analysis of prediction accuracy and extrapolation ability, a training strategy for ANN model was proposed including an artificially divided training set and the introduction of dropout layer. The artificial division makes the experimental samples in training set reduced by 40.7%, while the dropout layer prevents ANN model from overfitting caused by reduction of training data. Moreover, the deep nonlinear relationship between geometric dimensions ( H/W, B/W, a/W ) and ductile fracture properties was well learned by the ANN model. The average error of prediction is less than 11%. Finally, the proposed training strategy was extended to solve the fracture behaviors under varying thermal aging duration with saving training experimental samples by 53.8%. The results showed that the comprehensive interaction of in-plane constraint, out-of-plane constraint and thermal aging on the ductile fracture behaviors are well reproduced. Due to the good prediction performance, generalization and low training cost, the proposed training strategy can make the ANN model much more helpful for the solution of ductile fracture properties of different geometric dimensions in harsh environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助范佩西采纳,获得10
4秒前
marc107完成签到,获得积分10
4秒前
bing完成签到,获得积分10
4秒前
林林完成签到 ,获得积分10
4秒前
Wang发布了新的文献求助10
4秒前
6秒前
doclarrin完成签到 ,获得积分10
6秒前
123完成签到 ,获得积分20
8秒前
ido关闭了ido文献求助
8秒前
啵妞完成签到 ,获得积分10
10秒前
乐正夜白发布了新的文献求助10
10秒前
叮叮当当完成签到,获得积分10
10秒前
包容仙人掌完成签到,获得积分10
11秒前
情怀应助Wang采纳,获得10
11秒前
子非鱼完成签到 ,获得积分10
13秒前
kyt完成签到 ,获得积分10
13秒前
yyy完成签到 ,获得积分10
14秒前
九天完成签到 ,获得积分10
15秒前
gyf完成签到,获得积分10
15秒前
窦房结完成签到 ,获得积分10
15秒前
时代更迭完成签到 ,获得积分10
16秒前
Keyuuu30完成签到,获得积分0
18秒前
乐正夜白完成签到,获得积分10
20秒前
可靠的书本完成签到,获得积分10
20秒前
21秒前
skysleeper完成签到,获得积分0
22秒前
陈里里完成签到 ,获得积分10
23秒前
23秒前
penzer完成签到 ,获得积分10
24秒前
Artemis完成签到 ,获得积分10
26秒前
Wang发布了新的文献求助10
28秒前
hhr完成签到 ,获得积分10
29秒前
小稻草人发布了新的文献求助100
29秒前
const完成签到,获得积分10
32秒前
gougou完成签到,获得积分10
32秒前
sbt完成签到 ,获得积分10
32秒前
cc完成签到,获得积分10
32秒前
研友_ZlqeD8完成签到,获得积分10
35秒前
小土豆完成签到,获得积分10
36秒前
chenkj完成签到,获得积分10
36秒前
高分求助中
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 9th 400
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Critique du De mundo de Thomas White 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4394614
求助须知:如何正确求助?哪些是违规求助? 3884156
关于积分的说明 12091399
捐赠科研通 3528130
什么是DOI,文献DOI怎么找? 1936269
邀请新用户注册赠送积分活动 977197
科研通“疑难数据库(出版商)”最低求助积分说明 874899