A recursive method for the health assessment of systems using the proportional hazards model

协变量 等距 过程(计算) 计算机科学 数学优化 上下界 算法 随机矩阵 比例危险模型 数学 应用数学 统计 马尔可夫链 数学分析 几何学 操作系统
作者
Rui Zheng,Seyedvahid Najafi,Yingzhi Zhang
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:221: 108379-108379 被引量:18
标识
DOI:10.1016/j.ress.2022.108379
摘要

• A novel recursive method for the health assessment of a proportional hazards model. • Consideration of upper and lower bounds for approximating transition probabilities. • Development of a PHM framework based on the proposed method. • The proposed method outperforms existing approximation methods in CPU performance. The failure of many practical systems is dependent on both age and a diagnostic covariate process. Cox's proportional hazards model is widely adopted to describe the failure rate of such systems. If the covariate state space is large, it is computationally not feasible to use an analytical method for health assessment at inspection epochs. Existing approximation methods, although can address the above problem, fail to satisfy the critical requirements of modern health management in terms of accuracy, memory storage, and computational speed. This paper develops a novel recursive method to approximately assess the health indices of the proportional hazards model with a Markovian covariate process. The method discretizes age into equidistant and small subintervals. Over each subinterval, an incomplete state transition matrix is constructed with each element measured by its upper and lower bounds. The consideration of dual bounds makes our model more robust than previous methods considering only an upper bound. Then the recursive formulas of various health indices are derived based on the matrixes of consecutive subintervals. Two practical examples demonstrate that the proposed method can produce accurate assessment results with higher efficiency and less memory compared with existing approximation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
隐形曼青应助冷艳的故事采纳,获得10
2秒前
4秒前
CodeCraft应助小郭求学采纳,获得10
4秒前
5秒前
yana应助庄烨坤采纳,获得10
5秒前
Dr.wang发布了新的文献求助10
5秒前
6秒前
善学以致用应助扭扭车采纳,获得10
7秒前
科研助手6应助nico采纳,获得10
7秒前
ylc完成签到,获得积分10
7秒前
李猫猫发布了新的文献求助10
9秒前
10秒前
10秒前
淡淡老三完成签到,获得积分20
12秒前
好耶完成签到 ,获得积分10
14秒前
九九九应助杨呆呆采纳,获得10
15秒前
ygg完成签到,获得积分10
15秒前
amos完成签到,获得积分10
15秒前
17秒前
每天都在找完成签到,获得积分10
18秒前
hjp发布了新的文献求助10
20秒前
善良的安卉完成签到,获得积分10
20秒前
yana应助vic303采纳,获得10
20秒前
22秒前
yana应助个性书翠采纳,获得10
22秒前
科研通AI5应助MMMMMM采纳,获得10
24秒前
24秒前
coolkid应助科研通管家采纳,获得10
24秒前
Owen应助科研通管家采纳,获得10
24秒前
田様应助科研通管家采纳,获得10
25秒前
CipherSage应助科研通管家采纳,获得10
25秒前
科目三应助科研通管家采纳,获得10
25秒前
Lucas应助科研通管家采纳,获得10
25秒前
共享精神应助科研通管家采纳,获得10
25秒前
orixero应助科研通管家采纳,获得10
25秒前
乐乐应助科研通管家采纳,获得10
25秒前
26秒前
赫如冰完成签到 ,获得积分10
28秒前
汉堡包应助翊然甜周采纳,获得10
28秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845010
求助须知:如何正确求助?哪些是违规求助? 3387222
关于积分的说明 10548224
捐赠科研通 3107905
什么是DOI,文献DOI怎么找? 1712249
邀请新用户注册赠送积分活动 824304
科研通“疑难数据库(出版商)”最低求助积分说明 774683