铜
电化学
催化作用
法拉第效率
电流密度
电解
选择性
二氧化碳电化学还原
化学工程
二氧化碳
化学
碳纤维
无机化学
乙烯
氧化态
氧化还原
材料科学
电极
冶金
一氧化碳
有机化学
物理化学
复合材料
物理
量子力学
复合数
电解质
工程类
作者
Abdullah M. Asiri,Jing Gao,Sher Bahadar Khan,Khalid A. Alamry,Hadi M. Marwani,Mohammad Sherjeel Javed Khan,Waheed A. Adeosun,Shaik M. Zakeeruddin,Dan Ren,Michaël Grätzel
标识
DOI:10.1021/acs.jpclett.1c03957
摘要
Electroreduction of carbon dioxide (CO2) in a flow electrolyzer represents a promising carbon-neutral technology with efficient production of valuable chemicals. In this work, the catalytic performance of polycrystalline copper (Cu), Cu2O-derived copper (O(I)D-Cu), and CuO-derived copper (O(II)D-Cu) toward CO2 reduction is unraveled in a custom-designed flow cell. A peak Faradaic efficiency of >70% and a production rate of ca. -250 mA cm-2 toward C2+ products have been achieved on all the catalysts. In contrast to previous studies that reported a propensity for C2+ products on OD-Cu in conventional H-cells, the selectivity and activity of ethylene-dominated C2+ products are quite similar on the three types of catalysts at the same current density in our flow reactor. Our analysis also reveals current density to be a critical factor determining the C-C coupling in a flow cell, regardless of Cu catalyst's initial oxidation state and morphology.
科研通智能强力驱动
Strongly Powered by AbleSci AI