Digital twinning of self-sensing structures using the statistical finite element method

有限元法 桥(图论) 结构健康监测 光纤布拉格光栅 结构工程 计算机科学 点(几何) 数字数据 校准 工程类 数据传输 光纤 数学 电信 几何学 计算机硬件 统计 医学 内科学
作者
Eky Febrianto,Liam Butler,Mark Girolami,Fehmi Cirak
出处
期刊:Data-centric engineering [Cambridge University Press]
卷期号:3 被引量:55
标识
DOI:10.1017/dce.2022.28
摘要

Abstract The monitoring of infrastructure assets using sensor networks is becoming increasingly prevalent. A digital twin in the form of a finite element (FE) model, as commonly used in design and construction, can help make sense of the copious amount of collected sensor data. This paper demonstrates the application of the statistical finite element method (statFEM), which provides a principled means of synthesizing data and physics-based models, in developing a digital twin of a self-sensing structure. As a case study, an instrumented steel railway bridge of $ 27.34\hskip1.5pt \mathrm{m} $ length located along the West Coast Mainline near Staffordshire in the UK is considered. Using strain data captured from fiber Bragg grating sensors at 108 locations along the bridge superstructure, statFEM can predict the “true” system response while taking into account the uncertainties in sensor readings, applied loading, and FE model misspecification errors. Longitudinal strain distributions along the two main I-beams are both measured and modeled during the passage of a passenger train. The statFEM digital twin is able to generate reasonable strain distribution predictions at locations where no measurement data are available, including at several points along the main I-beams and on structural elements on which sensors are not even installed. The implications for long-term structural health monitoring and assessment include optimization of sensor placement and performing more reliable what-if analyses at locations and under loading scenarios for which no measurement data are available.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好久不见完成签到,获得积分10
刚刚
浮游应助keyan123采纳,获得10
1秒前
Kirito应助科研通管家采纳,获得200
2秒前
无极微光应助科研通管家采纳,获得20
2秒前
Ava应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
2秒前
orixero应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
Mine_cherry应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
3秒前
大模型应助科研通管家采纳,获得10
3秒前
3秒前
大模型应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
一一发布了新的文献求助10
3秒前
3秒前
今后应助嘴馋的我采纳,获得10
4秒前
华仔应助嘿嘿呼采纳,获得10
4秒前
小马甲应助令和采纳,获得10
5秒前
稻香与狗发布了新的文献求助10
5秒前
传奇3应助卷毛采纳,获得10
5秒前
故意的白翠完成签到 ,获得积分10
5秒前
汉堡包应助笨笨采纳,获得10
7秒前
8秒前
9秒前
科研通AI6应助Popeye采纳,获得10
11秒前
炙热的依秋完成签到,获得积分20
11秒前
Jade完成签到 ,获得积分10
13秒前
new1完成签到,获得积分10
13秒前
13秒前
星辰大海应助torjain采纳,获得10
14秒前
杨桑发布了新的文献求助30
14秒前
16秒前
16秒前
18秒前
Lynth_雪鸮发布了新的文献求助10
18秒前
124应助pamela采纳,获得10
20秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620797
求助须知:如何正确求助?哪些是违规求助? 4705375
关于积分的说明 14931806
捐赠科研通 4763300
什么是DOI,文献DOI怎么找? 2551231
邀请新用户注册赠送积分活动 1513783
关于科研通互助平台的介绍 1474672