人工智能
材料科学
稳健性(进化)
显微镜
光学显微镜
计算机视觉
显微镜
图像处理
背景(考古学)
微观结构
图像质量
光学
图像(数学)
计算机科学
扫描电子显微镜
冶金
复合材料
物理
化学
地质学
基因
古生物学
生物化学
作者
Piotr Krawczyk,Andreas Jansche,Timo Bernthaler,Gerhard Schneider
出处
期刊:Practical Metallography
[De Gruyter]
日期:2021-11-01
卷期号:58 (11): 684-696
被引量:4
摘要
Abstract Image-based qualitative and quantitative structural analyses using high-resolution light microscopy are integral parts of the materialographic work on materials and components. Vibrations or defocusing often result in blurred image areas, especially in large-scale micrographs and at high magnifications. As the robustness of the image-processing analysis methods is highly dependent on the image grade, the image quality directly affects the quantitative structural analysis. We present a deep learning model which, when using appropriate training data, is capable of increasing the image sharpness of light microscope images. We show that a sharpness correction for blurred images can successfully be performed using deep learning, taking the examples of steels with a bainitic microstructure, non-metallic inclusions in the context of steel purity degree analyses, aluminumsilicon cast alloys, sintered magnets, and lithium-ion batteries. We furthermore examine whether geometric accuracy is ensured in the artificially resharpened images.
科研通智能强力驱动
Strongly Powered by AbleSci AI