材料科学
泊洛沙姆
自愈水凝胶
低临界溶液温度
化学工程
胶束
流变学
共聚物
复合数
纳米晶
生物相容性
药物输送
动态力学分析
聚合物
复合材料
高分子化学
纳米技术
化学
有机化学
水溶液
工程类
冶金
作者
Eren Kushan,Erkan Şenses
标识
DOI:10.1021/acsabm.1c00046
摘要
Thermoresponsive amphiphilic Pluronic F127 triblock copolymer solutions have been widely investigated in smart biomaterial applications due to the proximity of its critical gel temperature to human body temperature. Meanwhile, cellulose nanocrystals (CNCs) have quickly become the focus of many drug delivery and tissue engineering applications due to their biocompatibility, abundance, ability to conjugate with drug molecules, and superior rheological properties. Herein, we investigate the phase behavior and thermo-rheological properties of the composite hydrogels containing cellulose nanocrystals (up to 5% by weight) and the temperature responsive Pluronic F127. Our results revealed an unprecedented role of CNC network formation on micellization and gelation behavior of the triblock copolymer. Linear and nonlinear rheological analysis suggest that at low and moderate nanocrystal loadings (1-3% by weight), the composite gel remarkably becomes softer and deformable compared to the neat Pluronic F127 gels. The softening effect results from the disruption of the close packed micelles by the rodlike CNCs. At high concentrations, however, the nanocrystals form their own network and the micelles are trapped within the CNC meshes. As a result, the original (neat F127) hard-gel modulus is recovered at 4 to 5% nanocrystal loading, yet the composite gel is much more deformable (and tougher) in the presence of the CNC network. Our temperature sweep experiments show that the CNC addition up to 3% does not change the rapid thermal gelation of the F127 solutions; therefore, these composites are suitable for smart drug delivery systems. On the other hand, at higher CNC concentrations, abrupt viscosity transition is not observed, rather the composite gels smoothly thicken with temperature in contrast to thermal thinning of the aqueous neat CNC. Thus, they can be used as smartly adaptive biolubricants and bioviscostatic materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI