Machine Learning-Assisted Hybrid ReaxFF Simulations

雷亚克夫 分子动力学 力场(虚构) 化学 计算机科学 计算化学 人工智能 原子间势
作者
Dündar E. Yılmaz,W. Hunter Woodward,Adri C. T. van Duin
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:17 (11): 6705-6712 被引量:7
标识
DOI:10.1021/acs.jctc.1c00523
摘要

We have developed a machine learning (ML)-assisted Hybrid ReaxFF simulation method ("Hybrid/Reax"), which alternates reactive and non-reactive molecular dynamics simulations with the assistance of ML models to simulate phenomena that require longer time scales and/or larger systems than are typically accessible to ReaxFF. Hybrid/Reax uses a specialized tracking tool during the reactive simulations to further accelerate chemical reactions. Non-reactive simulations are used to equilibrate the system after the reactive simulation stage. ML models are used between reactive and non-reactive stages to predict non-reactive force field parameters of the system based on the updated bond topology. Hybrid/Reax simulation cycles can be continued until the desired chemical reactions are observed. As a case study, this method was used to study the cross-linking of a polyethylene (PE) matrix analogue (decane) with the cross-linking agent dicumyl peroxide (DCP). We were able to run relatively long simulations [>20 million molecular dynamics (MD) steps] on a small test system (4660 atoms) to simulate cross-linking reactions of PE in the presence of DCP. Starting with 80 PE molecules, more than half of them cross-linked by the end of the Hybrid/Reax cycles on a single Xeon processor in under 48 h. This simulation would take approximately 1 month if run with pure ReaxFF MD on the same machine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欧米发布了新的文献求助10
刚刚
1秒前
矮小的尔曼完成签到,获得积分10
1秒前
科研通AI5应助鸡鱼蚝采纳,获得10
1秒前
1秒前
星星boy完成签到,获得积分10
2秒前
伍星宇发布了新的文献求助20
2秒前
ganson完成签到 ,获得积分10
2秒前
science_idot发布了新的文献求助10
2秒前
香蕉觅云应助月璃采纳,获得10
2秒前
2秒前
眯眯眼的鞋垫完成签到,获得积分10
3秒前
小吴发布了新的文献求助10
4秒前
4秒前
YiAn-horizon发布了新的文献求助50
4秒前
三秋完成签到,获得积分10
4秒前
4秒前
栗栗完成签到,获得积分10
6秒前
WDD完成签到,获得积分10
6秒前
霸气的念云完成签到,获得积分10
6秒前
7秒前
7秒前
123发布了新的文献求助10
7秒前
周周发布了新的文献求助10
7秒前
7秒前
小二郎应助小吴采纳,获得10
8秒前
8秒前
8秒前
8秒前
lihuanmoon完成签到,获得积分10
9秒前
山橘月完成签到,获得积分10
9秒前
OSC完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
YOLO完成签到,获得积分10
10秒前
黄新绒完成签到 ,获得积分10
11秒前
2323发布了新的文献求助10
12秒前
12秒前
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796073
求助须知:如何正确求助?哪些是违规求助? 3341050
关于积分的说明 10304104
捐赠科研通 3057671
什么是DOI,文献DOI怎么找? 1677780
邀请新用户注册赠送积分活动 805630
科研通“疑难数据库(出版商)”最低求助积分说明 762730