益生元
保健品
低聚果糖
生物技术
生化工程
食品工业
范围(计算机科学)
生物
食品科学
计算机科学
工程类
程序设计语言
作者
Ritumbhara Choukade,Naveen Kango
标识
DOI:10.1080/07388551.2021.1922352
摘要
Background Fructosyltransferases (FTases) are drawing increasing attention due to their application in prebiotic fructooligosaccharide (FOS) generation. FTases have been reported to occur in a variety of microorganisms but are predominantly found in filamentous fungi. These are employed at the industrial scale for generating FOS which make the key ingredient in functional food supplements and nutraceuticals due to their bifidogenic and various other health-promoting properties.Scope and approach This review is aimed to discuss recent developments made in the area of FTase production, characterization, and application in order to present a comprehensive account of their present status to the reader. Structural features, catalytic mechanisms, and FTase improvement strategies have also been discussed in order to provide insight into these aspects.Key findings and conclusions Although FTases occur in several plants and microorganisms, fungal FTases are being exploited commercially for industrial-scale FOS generation. Several fungal FTases have been characterized and heterologously expressed. However, considerable scope exists for improved production and application of FTases for cost-effective production of prebiotic FOS.HIGHLIGHTSFructosyltrasferase (FTase) is a key enzyme in fructo-oligosaccharide (FOS) generationDevelopments in the production, properties, and functional aspects of FTasesMolecular modification and immobilization strategies for improved FOS generationFructosyltransferases are innovation hotspots in the food and nutraceutical industries
科研通智能强力驱动
Strongly Powered by AbleSci AI