The Incremental Role of Magnetic Resonance Imaging for Prostate Cancer Staging before Radical Prostatectomy

医学 前列腺切除术 磁共振成像 前列腺癌 泌尿科 前列腺 放射科 癌症 内科学
作者
Alessandro Morlacco,Vidit Sharma,Boyd R. Viers,Laureano J. Rangel,Rachel E. Carlson,Adam T. Froemming,R. Jeffrey Karnes
出处
期刊:European Urology [Elsevier BV]
卷期号:71 (5): 701-704 被引量:107
标识
DOI:10.1016/j.eururo.2016.08.015
摘要

In the present report we aimed to analyze the incremental value of preoperative magnetic resonance imaging (MRI), in addition to clinical variables and clinically-derived nomograms, in predicting outcomes radical prostatectomy (RP). All Mayo Clinic RP patients who underwent preoperative 1.5-Tesla MRI with endo-rectal coil from 2003 to 2013 were identified. Clinical and histopathological variables were used to calculate Partin estimates and Cancer of the Prostate Risk Assessment (CAPRA) score. MRI results in terms of extracapsular extension (ECE), seminal vesicle invasion (SVI), and lymph-node invasion (N+) were recorded. Using RP pathology as gold standard, we developed multivariate logistic regression models based on clinical variables, Partin Tables, and CAPRA score, and assessed their predictive accuracy before and after the addition of MRI results. Five hundred and one patients were included. MRI + clinical models outperformed clinical-based models alone for all outcomes. Comparing Partin and Partin + MRI predictive models, the areas under the curve were 0.61 versus 0.73 for ECE, 0.75 versus 0.82 for SVI, and 0.82 versus 0.85 for N+. Comparing CAPRA and CAPRA + MRI models, the areas under the curve were 0.69 versus 0.77 for ECE, 0.75 versus 0.83 for SVI, and 0.82 versus 0.85 for N+. Our data show that MRI can improve clinical-based models in prediction of nonorgan confined disease, particularly for ECE and SVI. Magnetic resonance imaging, together with clinical information, can be useful in preoperative assessment before radical prostatectomy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wenyh发布了新的文献求助10
刚刚
3秒前
Ray驳回了今后应助
3秒前
3秒前
番茄完成签到,获得积分10
4秒前
乐乐应助黄花采纳,获得10
5秒前
午后两点最热完成签到,获得积分10
5秒前
asdfghjk完成签到,获得积分10
5秒前
Asuka发布了新的文献求助10
7秒前
7秒前
朝朝完成签到,获得积分20
10秒前
万骛发布了新的文献求助10
13秒前
13秒前
秋秋完成签到,获得积分10
14秒前
汉堡包应助忧郁芹菜采纳,获得10
17秒前
Asuka完成签到,获得积分20
18秒前
刘峰发布了新的文献求助20
18秒前
一帆风顺完成签到,获得积分20
18秒前
充电宝应助KD采纳,获得10
20秒前
科研通AI5应助清萍红檀采纳,获得10
21秒前
隐形曼青应助xgx984采纳,获得10
23秒前
香蕉觅云应助万骛采纳,获得10
23秒前
所所应助荀荆采纳,获得10
23秒前
24秒前
24秒前
24秒前
Jasper应助科研通管家采纳,获得10
25秒前
wanci应助科研通管家采纳,获得10
25秒前
26秒前
momo发布了新的文献求助10
27秒前
吴彦祖完成签到,获得积分10
27秒前
27秒前
好好学习发布了新的文献求助10
29秒前
29秒前
30秒前
深情安青应助1贾采纳,获得10
32秒前
35秒前
小马甲应助1461644768采纳,获得10
35秒前
LM完成签到,获得积分10
35秒前
荀荆发布了新的文献求助10
35秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829369
求助须知:如何正确求助?哪些是违规求助? 3372030
关于积分的说明 10470309
捐赠科研通 3091581
什么是DOI,文献DOI怎么找? 1701245
邀请新用户注册赠送积分活动 818327
科研通“疑难数据库(出版商)”最低求助积分说明 770830