The Arrhenius Equation Revisited

阿累尼乌斯方程 热力学 活化能 化学 结构方程建模 数学 物理化学 统计 物理
作者
Micha Peleg,Mark D. Normand,Maria G. Corradini
出处
期刊:Critical Reviews in Food Science and Nutrition [Informa]
卷期号:52 (9): 830-851 被引量:310
标识
DOI:10.1080/10408398.2012.667460
摘要

The Arrhenius equation has been widely used as a model of the temperature effect on the rate of chemical reactions and biological processes in foods. Since the model requires that the rate increase monotonically with temperature, its applicability to enzymatic reactions and microbial growth, which have optimal temperature, is obviously limited. This is also true for microbial inactivation and chemical reactions that only start at an elevated temperature, and for complex processes and reactions that do not follow fixed order kinetics, that is, where the isothermal rate constant, however defined, is a function of both temperature and time. The linearity of the Arrhenius plot, that is, Ln[k(T)] vs. 1/T where T is in °K has been traditionally considered evidence of the model's validity. Consequently, the slope of the plot has been used to calculate the reaction or processes' "energy of activation," usually without independent verification. Many experimental and simulated rate constant vs. temperature relationships that yield linear Arrhenius plots can also be described by the simpler exponential model Ln[k(T)/k(T(reference))] = c(T-T(reference)). The use of the exponential model or similar empirical alternative would eliminate the confusing temperature axis inversion, the unnecessary compression of the temperature scale, and the need for kinetic assumptions that are hard to affirm in food systems. It would also eliminate the reference to the Universal gas constant in systems where a "mole" cannot be clearly identified. Unless proven otherwise by independent experiments, one cannot dismiss the notion that the apparent linearity of the Arrhenius plot in many food systems is due to a mathematical property of the model's equation rather than to the existence of a temperature independent "energy of activation." If T+273.16°C in the Arrhenius model's equation is replaced by T+b, where the numerical value of the arbitrary constant b is substantially larger than T and T(reference), the plot of Ln k(T) vs. 1/(T+b) will always appear almost perfectly linear. Both the modified Arrhenius model version having the arbitrary constant b, Ln[k(T)/k(T(reference)) = a[1/ (T(reference)+b)-1/ (T+b)], and the exponential model can faithfully describe temperature dependencies traditionally described by the Arrhenius equation without the assumption of a temperature independent "energy of activation." This is demonstrated mathematically and with computer simulations, and with reprocessed classical kinetic data and published food results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
East完成签到 ,获得积分10
刚刚
Amai发布了新的文献求助10
1秒前
李爱国应助创不可贴采纳,获得10
1秒前
2秒前
2秒前
asder完成签到,获得积分10
2秒前
LYH完成签到,获得积分10
3秒前
疯狂的慕灵完成签到 ,获得积分10
4秒前
BINGBING1230发布了新的文献求助10
4秒前
East关注了科研通微信公众号
4秒前
完美世界应助王子倩采纳,获得10
5秒前
5秒前
科目三应助wang采纳,获得10
6秒前
6秒前
6秒前
7秒前
法外潮湿宝贝完成签到 ,获得积分10
7秒前
lxzk11110000完成签到,获得积分10
7秒前
Amai完成签到,获得积分10
8秒前
坦率的刺猬完成签到,获得积分10
8秒前
gwfew发布了新的文献求助10
8秒前
大宽完成签到,获得积分10
8秒前
FashionBoy应助王老裂采纳,获得10
9秒前
9秒前
9秒前
彭于晏应助reny采纳,获得10
10秒前
11秒前
九日发布了新的文献求助40
11秒前
11秒前
ZZB发布了新的文献求助10
12秒前
寒烟完成签到,获得积分10
12秒前
12秒前
星辰发布了新的文献求助10
12秒前
xiaohan,JIA完成签到,获得积分10
13秒前
香蕉觅云应助HL采纳,获得10
13秒前
13秒前
14秒前
初识完成签到,获得积分10
15秒前
Jennifer发布了新的文献求助10
15秒前
小穆发布了新的文献求助10
16秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5350006
求助须知:如何正确求助?哪些是违规求助? 4483602
关于积分的说明 13956475
捐赠科研通 4382822
什么是DOI,文献DOI怎么找? 2408004
邀请新用户注册赠送积分活动 1400684
关于科研通互助平台的介绍 1373963