泰勒分散
多孔介质
矢量场
机械
布朗运动
色散(光学)
示踪剂
粒子(生态学)
流体力学
流速
领域(数学)
热扩散率
物理
经典力学
流量(数学)
多孔性
数学
扩散
地质学
光学
热力学
岩土工程
海洋学
量子力学
核物理学
纯数学
出处
期刊:Philosophical transactions of the Royal Society of London
[The Royal Society]
日期:1980-07-24
卷期号:297 (1430): 81-133
被引量:463
标识
DOI:10.1098/rsta.1980.0205
摘要
A rigorous theory of dispersion in both granular and sintered spatially-periodic porous media is presented, utilizing concepts originating from Brownian motion theory. A precise prescription is derived for calculating both the Darcy-scale interstitial velocity vector v* and dispersivity dyadic D* of a tracer particle. These are expressed in terms of the local fluid velocity vector field v at each point within the interstices of a unit cell of the spatially periodic array and, for the dispersivity, the molecular diffusivity of the tracer particle through the fluid. Though the theory is complete, numerical results are not yet available owing to the complex structure of the local interstitial velocity field v. However, as an illustrative exercise, the theory is shown to correctly reduce in an appropriate limiting case to the well-known Taylor-Aris results for dispersion in circular capillaries.
科研通智能强力驱动
Strongly Powered by AbleSci AI