Modeling and Analysis of Cascading Failures in Interdependent Cyber-Physical Systems

相互依存的网络 弹性(材料科学) 风险分析(工程) 复杂系统 计算机安全 关键基础设施 电力系统 可靠性工程
作者
Yingrui Zhang,Osman Yagan
出处
期刊:Conference on Decision and Control 卷期号:: 4731-4738 被引量:7
标识
DOI:10.1109/cdc.2018.8618710
摘要

Integrated cyber-physical systems (CPSs), such as the smart grid, are becoming the underpinning technology for major industries. A major concern regarding such systems are the seemingly unexpected large scale failures, which are often attributed to a small initial shock getting escalated due to intricate dependencies within and across the individual counterparts of the system. In this paper, we develop a novel interdependent system model to capture this phenomenon, also known as cascading failures. Our framework consists of two networks that have inherently different characteristics governing their intra-dependency: i) a cyber-network where a node is deemed to be functional as long as it belongs to the largest connected (i.e., giant) component; and ii) a physical network where nodes are given an initial flow and a capacity, and failure of a node results with redistribution of its flow to the remaining nodes, upon which further failures might take place due to overloading. Furthermore, it is assumed that these two networks are inter-dependent. For simplicity, we consider a one-to-one interdependency model where every node in the cyber-network is dependent upon and supports a single node in the physical network, and vice versa. We provide a thorough analysis of the dynamics of cascading failures in this interdependent system initiated with a random attack. The system robustness is quantified as the surviving fraction of nodes at the end of cascading failures, and is derived in terms of all network parameters involved. Analytic results are supported through an extensive numerical study. Among other things, these results demonstrate the ability of our model to capture the unexpected nature of large-scale failures, and provide insights on improving system robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Sept完成签到,获得积分10
1秒前
颜颜完成签到,获得积分10
1秒前
1秒前
MoL发布了新的文献求助30
2秒前
科研通AI5应助聪明煎饼采纳,获得10
2秒前
zhumingsijiu发布了新的文献求助10
3秒前
科研通AI5应助黑色幽默采纳,获得10
4秒前
打打应助zhy采纳,获得10
4秒前
天天快乐应助不安毛豆采纳,获得10
5秒前
英俊的铭应助蒸芋芋了采纳,获得10
6秒前
6秒前
大碗牛肉面特辣完成签到,获得积分10
8秒前
8秒前
奋斗的秋珊完成签到,获得积分10
9秒前
完美世界应助科盲TCB采纳,获得10
9秒前
9秒前
无限白易应助欧皇采纳,获得10
9秒前
MXX完成签到,获得积分10
11秒前
光123发布了新的文献求助10
11秒前
11秒前
生如夏花完成签到 ,获得积分10
11秒前
Mango完成签到,获得积分10
12秒前
MXX发布了新的文献求助10
13秒前
SciGPT应助lingo采纳,获得10
14秒前
14秒前
orixero应助lingo采纳,获得10
14秒前
yibaozhangfa应助xys采纳,获得30
14秒前
自然紫山发布了新的文献求助30
15秒前
chongchong发布了新的文献求助10
16秒前
化学少女发布了新的文献求助10
16秒前
stayloy发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
Nidhogg完成签到,获得积分10
18秒前
keyantong666完成签到,获得积分10
18秒前
陬廿六完成签到 ,获得积分10
18秒前
lwa完成签到,获得积分10
18秒前
英姑应助义气的行天采纳,获得10
18秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842155
求助须知:如何正确求助?哪些是违规求助? 3384295
关于积分的说明 10533896
捐赠科研通 3104642
什么是DOI,文献DOI怎么找? 1709781
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 774029