Illumination Compensated images for surface roughness evaluation using machine vision in grinding process

同态滤波 表面粗糙度 表面光洁度 人工智能 计算机视觉 机械加工 机器视觉 研磨 离散余弦变换 计算机科学 材料科学 机床 图像(数学) 复合材料 冶金 图像增强
作者
Jibin G. John,N. Arunachalam
出处
期刊:Procedia Manufacturing [Elsevier]
卷期号:34: 969-977 被引量:24
标识
DOI:10.1016/j.promfg.2019.06.099
摘要

Appropriate lighting is one of the indispensable elements in inspection using machine vision system. Illumination variation affects the accuracy and robustness of an inspection method that employs a machine vision system. The lighting inhomogeneity is the disturbing signal that needed to be suppressed to achieve accuracy and consistency in surface roughness quantification. In this work, the illumination compensation techniques are used for ground surface roughness evaluation by statistical texture parameters using machine vision method. The three-dimensional (3-D) surface roughness parameters are compared with the texture parameters. The experimental results are based on the ground surface images that are machined at different machining parameters. After the grinding process, the images are captured under halogen lighting. The acquired images of ground specimens are used for illumination compensation using: homomorphic filtering, Discrete Cosine Transform (DCT) based filtering and Fourier Transform (FT) based filtering techniques. This helps to suppress the low frequency components and amplify the high frequency components in order to extract the texture information. Owing the fact that the ground surfaces were weaker anisotropic surfaces, the second order statistical evaluation methods are used to extract the changes in the image texture due to the variation in surface roughness of the component. The texture parameters evaluated using these methods are correlated with the 3-D surface roughness parameters measured using an optical profiler. The texture parameters showed better correlation with the measured roughness values and this can be an integral part of any grinding system to inspect the machined components. In order to establish the homogeneity achieved after compensation of images, the inhomogeneity indicator and harmonic distortion values are calculated for the ground images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
先生完成签到,获得积分10
1秒前
奋斗青年完成签到,获得积分10
1秒前
无花果应助冥土采纳,获得10
1秒前
1秒前
爆米花应助水果采纳,获得10
1秒前
jason完成签到,获得积分10
2秒前
2秒前
linlinshine完成签到,获得积分10
2秒前
李健应助liangliu采纳,获得10
3秒前
一一应助清风采纳,获得10
3秒前
Owen应助执着从灵采纳,获得10
3秒前
3秒前
站岗小狗完成签到 ,获得积分10
4秒前
成就的念双完成签到,获得积分10
4秒前
彭于晏应助微眠采纳,获得10
5秒前
5秒前
5秒前
jason发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
echogj完成签到,获得积分10
6秒前
GQ发布了新的文献求助10
7秒前
还有跟发布了新的文献求助20
7秒前
活泼溪流完成签到,获得积分10
7秒前
CipherSage应助胖圈儿采纳,获得10
9秒前
王闪闪发布了新的文献求助10
9秒前
9秒前
今后应助yikeyaowanzi采纳,获得10
9秒前
无敌OUT曼完成签到,获得积分10
10秒前
10秒前
橙汁完成签到,获得积分10
10秒前
无花果应助刘凯采纳,获得10
10秒前
10秒前
10秒前
大眼睛土豆完成签到,获得积分10
10秒前
大气如雪发布了新的文献求助10
11秒前
笨笨的兰完成签到,获得积分10
12秒前
13完成签到,获得积分10
12秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388481
求助须知:如何正确求助?哪些是违规求助? 4510609
关于积分的说明 14035848
捐赠科研通 4421354
什么是DOI,文献DOI怎么找? 2428772
邀请新用户注册赠送积分活动 1421347
关于科研通互助平台的介绍 1400559