Unsupervised electric motor fault detection by using deep autoencoders

自编码 人工智能 计算机科学 模式识别(心理学) 新知识检测 支持向量机 深度学习 人工神经网络 无监督学习 断层(地质) 故障检测与隔离 卷积神经网络 多层感知器 机器学习 新颖性 地质学 哲学 神学 地震学 执行机构
作者
Emanuele Principi,Damiano Rossetti,Stefano Squartini,Francesco Piazza
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:6 (2): 441-451 被引量:171
标识
DOI:10.1109/jas.2019.1911393
摘要

Fault diagnosis of electric motors is a fundamental task for production line testing, and it is usually performed by experienced human operators. In the recent years, several methods have been proposed in the literature for detecting faults automatically. Deep neural networks have been successfully employed for this task, but, up to the authors' knowledge, they have never been used in an unsupervised scenario. This paper proposes an unsupervised method for diagnosing faults of electric motors by using a novelty detection approach based on deep autoencoders. In the proposed method, vibration signals are acquired by using accelerometers and processed to extract LogMel coefficients as features. Autoencoders are trained by using normal data only, i.e., data that do not contain faults. Three different autoencoders architectures have been evaluated: the multilayer perceptron (MLP) autoencoder, the convolutional neural network autoencoder, and the recurrent autoencoder composed of long short-term memory (LSTM) units. The experiments have been conducted by using a dataset created by the authors, and the proposed approaches have been compared to the one-class support vector machine (OC-SVM) algorithm. The performance has been evaluated in terms area under curve (AUC) of the receiver operating characteristic curve, and the results showed that all the autoencoder-based approaches outperform the OCSVM algorithm. Moreover, the MLP autoencoder is the most performing architecture, achieving an AUC equal to 99.11%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助flysky120采纳,获得10
1秒前
科研通AI5应助孟子航采纳,获得10
2秒前
3秒前
xiaohu完成签到,获得积分10
4秒前
整齐的小刺猬完成签到,获得积分10
4秒前
张可发布了新的文献求助10
4秒前
4秒前
英姑应助耶?采纳,获得10
5秒前
ybwei2008_163发布了新的文献求助10
5秒前
斯文败类应助任性的天空采纳,获得10
7秒前
长生发布了新的文献求助10
7秒前
iNk应助淡定小翠采纳,获得20
8秒前
8秒前
雨中漫步完成签到,获得积分10
8秒前
满意哈密瓜,数据线完成签到 ,获得积分20
8秒前
9秒前
9秒前
科研通AI5应助123采纳,获得10
9秒前
Dailei发布了新的文献求助10
12秒前
天想月发布了新的文献求助10
12秒前
糊涂的丹南完成签到 ,获得积分10
13秒前
吴青完成签到,获得积分10
14秒前
小梦完成签到,获得积分10
14秒前
xxxqqq发布了新的文献求助10
14秒前
17秒前
顾矜应助超级南风采纳,获得30
17秒前
hh完成签到,获得积分10
17秒前
18秒前
长生完成签到,获得积分10
18秒前
19秒前
kongbaige发布了新的文献求助10
23秒前
小天发布了新的文献求助10
24秒前
hh发布了新的文献求助10
24秒前
25秒前
虚幻白桃完成签到,获得积分10
25秒前
科研通AI5应助伊雪儿采纳,获得10
27秒前
斯文的小旋风完成签到,获得积分0
27秒前
专注绿真完成签到,获得积分20
30秒前
30秒前
30秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801800
求助须知:如何正确求助?哪些是违规求助? 3347588
关于积分的说明 10334363
捐赠科研通 3063747
什么是DOI,文献DOI怎么找? 1682067
邀请新用户注册赠送积分活动 807893
科研通“疑难数据库(出版商)”最低求助积分说明 763960