癌症研究
免疫
细胞
刺
细胞免疫
细胞生物学
DNA损伤
免疫系统
免疫学
生物
化学
遗传学
工程类
航空航天工程
DNA
作者
Triparna Sen,B. Leticia Rodriguez,Limo Chen,Carminia Maria Della Corte,Naoto Morikawa,Junya Fujimoto,Sandra Cristea,Thuyen Nguyen,Lixia Diao,Lerong Li,You-Hong Fan,Yongbin Yang,Jing Wang,Bonnie S. Glisson,Ignacio I. Wistuba,Julien Sage,John V. Heymach,Don L. Gibbons,Lauren A. Byers
出处
期刊:Cancer Discovery
[American Association for Cancer Research]
日期:2019-02-18
卷期号:9 (5): 646-661
被引量:719
标识
DOI:10.1158/2159-8290.cd-18-1020
摘要
Abstract Despite recent advances in the use of immunotherapy, only a minority of patients with small cell lung cancer (SCLC) respond to immune checkpoint blockade (ICB). Here, we show that targeting the DNA damage response (DDR) proteins PARP and checkpoint kinase 1 (CHK1) significantly increased protein and surface expression of PD-L1. PARP or CHK1 inhibition remarkably potentiated the antitumor effect of PD-L1 blockade and augmented cytotoxic T-cell infiltration in multiple immunocompetent SCLC in vivo models. CD8+ T-cell depletion reversed the antitumor effect, demonstrating the role of CD8+ T cells in combined DDR–PD-L1 blockade in SCLC. We further demonstrate that DDR inhibition activated the STING/TBK1/IRF3 innate immune pathway, leading to increased levels of chemokines such as CXCL10 and CCL5 that induced activation and function of cytotoxic T lymphocytes. Knockdown of cGAS and STING successfully reversed the antitumor effect of combined inhibition of DDR and PD-L1. Our results define previously unrecognized innate immune pathway–mediated immunomodulatory functions of DDR proteins and provide a rationale for combining PARP/CHK1 inhibitors and immunotherapies in SCLC. Significance: Our results define previously unrecognized immunomodulatory functions of DDR inhibitors and suggest that adding PARP or CHK1 inhibitors to ICB may enhance treatment efficacy in patients with SCLC. Furthermore, our study supports a role of innate immune STING pathway in DDR-mediated antitumor immunity in SCLC. See related commentary by Hiatt and MacPherson, p. 584. This article is highlighted in the In This Issue feature, p. 565
科研通智能强力驱动
Strongly Powered by AbleSci AI