A Fully Biodegradable and Ultra‐Sensitive Crack‐Based Strain Sensor for Biomechanical Signal Monitoring

材料科学 拉伤 信号(编程语言) 复合材料 纳米技术 计算机科学 医学 内科学 程序设计语言
作者
Jae‐Hwan Lee,Jae‐Young Bae,Yoon‐Nam Kim,Minseong Chae,Woo‐Jin Lee,Junsang Lee,Im‐Deok Kim,Jung Keun Hyun,Kang‐Sik Lee,Daeshik Kang,Seung‐Kyun Kang
出处
期刊:Advanced Functional Materials [Wiley]
被引量:6
标识
DOI:10.1002/adfm.202406035
摘要

Abstract A fully biodegradable, ultra‐sensitive, and soft strain sensor is pivotal for temporary, real‐time monitoring of microdeformations, crucial in disease diagnosis, surgical precision, and prognosis of muscular, and vascular conditions. Nevertheless, the strain sensitivity of previous biodegradable sensors, denoted by gauge factor (GF) up to ≈100, falls short of requirements for complex biomedical monitoring scenarios, specifically monitoring cardio‐cerebrovascular diseases with microscale variations in vascular surface strain. Here, a fully biodegradable, ultra‐sensitive crack‐based flexible strain sensor is introduced achieving GF of 1355 at 1.5% strain through integration of molybdenum (Mo) film, molybdenum trioxide (MoO 3 ) adhesion layer, and polycaprolactone (PCL) substrate. Analysis of crack morphology of biodegradable thin‐film metals, including Mo, tungsten (W), and magnesium (Mg), reveals material‐dependent sensitivity and repeatability of crack‐based strain sensors. The effect of the adhesion layer and polymer substrate is also investigated. Overall morphological studies on the sensor present a comprehensive understanding of metal film cracking behavior and corresponding performance characterization, showing significant potential for highly sensitive sensors. A hybrid membrane composed of candelilla wax (C w ), beeswax (B w ), and polybutylene adipate‐co‐terephthalate (PBAT) is introduced to provide hydrophobic, yet flexible encapsulation. In vivo, short‐term (≈3 days) monitoring of vascular pulsatility underscores the potential of the sensing tool for rapid, accurate, and temporal disease diagnosis and treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
12完成签到,获得积分10
1秒前
thz完成签到,获得积分10
1秒前
QUU关闭了QUU文献求助
2秒前
3秒前
田様应助人来人往采纳,获得10
4秒前
4秒前
明亮梦安完成签到,获得积分10
5秒前
orixero应助智智采纳,获得10
6秒前
冰魂应助pny采纳,获得10
7秒前
小二郎应助pny采纳,获得10
7秒前
茜茜发布了新的文献求助10
7秒前
权志龙发布了新的文献求助10
7秒前
幽默莞发布了新的文献求助10
7秒前
俭朴的世界完成签到 ,获得积分10
8秒前
10秒前
陌上完成签到,获得积分10
10秒前
王南晰完成签到 ,获得积分10
11秒前
安白完成签到,获得积分10
11秒前
xdmhv完成签到 ,获得积分10
12秒前
巨星不吃辣完成签到,获得积分10
12秒前
wannn完成签到 ,获得积分10
14秒前
南木_完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
16秒前
人来人往完成签到,获得积分10
17秒前
兴奋的乐巧完成签到,获得积分10
18秒前
kejun完成签到 ,获得积分10
19秒前
莫西莫西完成签到,获得积分10
20秒前
木耳完成签到,获得积分10
20秒前
安白发布了新的文献求助10
21秒前
113发布了新的文献求助10
21秒前
人来人往发布了新的文献求助10
22秒前
故意的冰烟完成签到,获得积分20
23秒前
大力盼波完成签到,获得积分10
23秒前
23秒前
茜茜完成签到,获得积分10
26秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
The Framed World: Tourism, Tourists and Photography (New Directions in Tourism Analysis) 1st Edition 200
Graphene Quantum Dots (GQDs): Advances in Research and Applications 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825431
求助须知:如何正确求助?哪些是违规求助? 3367677
关于积分的说明 10447129
捐赠科研通 3087033
什么是DOI,文献DOI怎么找? 1698374
邀请新用户注册赠送积分活动 816796
科研通“疑难数据库(出版商)”最低求助积分说明 769951