Self-Supervised Contrastive Learning on Attribute and Topology Graphs for Predicting Relationships Among lncRNAs, miRNAs and Diseases

计算机科学 人工智能 机器学习 监督学习 拓扑(电路) 计算生物学 理论计算机科学 数学 生物 组合数学 人工神经网络
作者
Lan Huang,Nan Sheng,Ling Gao,Lei Wang,Wenju Hou,Jie Hong,Yan Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (1): 657-668 被引量:9
标识
DOI:10.1109/jbhi.2024.3467101
摘要

Exploring associations between long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and diseases is crucial for disease prevention, diagnosis and treatment. While determining these relationships experimentally is resource-intensive and time-consuming, computational methods have emerged as an attractive way. However, existing computational methods tend to focus on single tasks, neglecting the benefits of leveraging multiple biomolecular interactions and domain-specific knowledge for multi-task prediction. Furthermore, the scarcity of labeled data for lncRNA-disease associations (LDAs), miRNA-disease associations (MDAs) and lncRNA-miRNA interactions (LMIs) poses challenges for comprehensive node embedding learning. This paper proposes a multi-task prediction model (called SSCLMD) that employs self-supervised contrastive learning on attribute and topology graphs to identify potential LDAs, MDAs and LMIs. Firstly, domain knowledge of lncRNAs, miRNAs and diseases as well as their interactions are exploited to construct attribute graph and topology graph, respectively. Then, the nodes are encoded in the attribute and topology spaces to extract the specific and common feature. Meanwhile, the attention mechanism is performed to adaptively fuse the embedding from different views. SSCLMD incorporates contrastive self-supervised learning as a regularize to guide node embedding learning in both attribute and topology space without relying on labels. Severing as a regularize in multi-task learning paradigm, it to improves the model.s generalization capabilities. Extensive experiments on 2 manually curated datasets demonstrate that SSCLMD significantly outperforms baseline methods in LDA, MDA and LMI prediction tasks. Case studies on both old and new datasets further supported SSCLMD's ability to uncover novel disease-related lncRNAs and miRNAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
疯狂的丹珍完成签到 ,获得积分10
刚刚
强健的冰棍完成签到,获得积分10
刚刚
bct完成签到,获得积分10
刚刚
DXY发布了新的文献求助10
刚刚
jmy发布了新的文献求助10
1秒前
CC完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
致行完成签到,获得积分10
1秒前
Frank应助tianjiu采纳,获得10
2秒前
xxx完成签到,获得积分10
3秒前
美丽谷槐发布了新的文献求助10
3秒前
叶祥完成签到,获得积分10
3秒前
隐形元绿完成签到 ,获得积分10
3秒前
粗暴的君浩完成签到,获得积分10
3秒前
4秒前
jmn完成签到,获得积分10
4秒前
4秒前
lh完成签到,获得积分10
4秒前
5秒前
joker完成签到,获得积分10
6秒前
6秒前
傅梦秋完成签到,获得积分10
6秒前
慕容杏子完成签到,获得积分10
6秒前
义气的松鼠完成签到 ,获得积分20
8秒前
天才Kitty猫完成签到,获得积分10
8秒前
Jally发布了新的文献求助10
8秒前
风吹麦田应助阳光锦程采纳,获得40
8秒前
jmy完成签到,获得积分10
8秒前
9秒前
胡平发布了新的文献求助10
10秒前
10秒前
11秒前
星辰大海应助cwl采纳,获得10
11秒前
12秒前
EvenCai发布了新的文献求助10
12秒前
勤劳寒烟完成签到,获得积分10
12秒前
Yyyyyyyy完成签到 ,获得积分10
13秒前
武鑫跃发布了新的文献求助30
13秒前
nibaba完成签到,获得积分10
14秒前
隐形曼青应助任性宇豪采纳,获得10
14秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5451784
求助须知:如何正确求助?哪些是违规求助? 4559632
关于积分的说明 14274052
捐赠科研通 4483642
什么是DOI,文献DOI怎么找? 2455593
邀请新用户注册赠送积分活动 1446479
关于科研通互助平台的介绍 1422340