Self-Supervised Contrastive Learning on Attribute and Topology Graphs for Predicting Relationships Among lncRNAs, miRNAs and Diseases

计算机科学 人工智能 机器学习 监督学习 拓扑(电路) 计算生物学 理论计算机科学 数学 生物 组合数学 人工神经网络
作者
Lan Huang,Nan Sheng,Ling Gao,Lei Wang,Wenju Hou,Jie Hong,Yan Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:2
标识
DOI:10.1109/jbhi.2024.3467101
摘要

Exploring potential association between long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and diseases is an essential part of prevention, diagnosis and treatment of diseases. Since determining these relationships experimentally is resource-intensive and time-consuming, therefore computational methods have emerged as an attractive way to address this issue. However, existing computational approaches for inferring lncRNA-disease associations (LDA), miRNA-disease associations (MDA) and lncRNA-miRNA interactions (LMI) tend to focus on single task, neglecting the benefits of leveraging multiple biomolecular interactions and domain-specific knowledge for multi-task prediction. Furthermore, labeled data for LDA, MDA and LMI is scarce and costly in real-word applications, making it challenging for models to learn comprehensive node embedding patterns. Building on our previous work, this paper proposes a multi-task prediction model (called SSCLMD) that employs self-supervised contrastive learning on attribute and topology graphs to identify potential LDAs, MDAs and LMIs. Specifically, firstly, domain knowledge of lncRNAs, miRNAs and diseases as well as their interactions are exploited to construct attribute graph and topology graph, respectively. Then, the nodes are encoded in the attribute and topology spaces to extract the specific and common feature. Meanwhile, the attention mechanism is performed to adaptively fuse the embedding from different views. SSCLMD incorporates a contrastive self-supervised learning task as a regularize to guide the learning of node embeddings in both attribute and topology space without relying on labels. Severing as a regularize in multi-task learning paradigm, it to improves the model's generalization capabilities. Extensive experiments on 2 manually curated datasets demonstrate that SSCLMD significantly outperforms other baseline methods in LDA, MDA and LMI prediction tasks. Additionally, case studies on both new and old datasets further supported the ability of SSCLMD to uncover novel disease-related lncRNAs and miRNAs. The source codes and supplementary file of this work are publicly available on \url{https://github.com/sheng-n/SSCLMD}.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搜集达人应助光亮向雁采纳,获得10
1秒前
orixero应助李俊枫采纳,获得30
2秒前
yan发布了新的文献求助10
4秒前
5秒前
李建芳发布了新的文献求助10
5秒前
保护野菠萝完成签到,获得积分10
6秒前
跳跃安波完成签到 ,获得积分10
7秒前
Ava应助Elcric采纳,获得30
9秒前
152完成签到 ,获得积分10
9秒前
Realrr完成签到 ,获得积分10
9秒前
10秒前
juzi完成签到 ,获得积分10
13秒前
qiao应助AA采纳,获得10
16秒前
17秒前
19秒前
19秒前
冷笑完成签到,获得积分10
19秒前
怡然幻然完成签到,获得积分10
21秒前
光亮向雁发布了新的文献求助10
21秒前
pluto应助糟糕的铁锤采纳,获得50
23秒前
24秒前
Lucas应助科研通管家采纳,获得10
28秒前
传奇3应助科研通管家采纳,获得10
28秒前
CodeCraft应助科研通管家采纳,获得10
28秒前
大模型应助科研通管家采纳,获得10
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得30
28秒前
Jasper应助科研通管家采纳,获得10
28秒前
情怀应助科研通管家采纳,获得20
28秒前
雨夜星空应助科研通管家采纳,获得20
28秒前
JamesPei应助科研通管家采纳,获得10
28秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
ding应助科研通管家采纳,获得10
29秒前
酷波er应助科研通管家采纳,获得10
29秒前
华仔应助科研通管家采纳,获得10
29秒前
星辰大海应助科研通管家采纳,获得10
29秒前
Ava应助科研通管家采纳,获得10
29秒前
上官若男应助科研通管家采纳,获得10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776680
求助须知:如何正确求助?哪些是违规求助? 3322161
关于积分的说明 10208892
捐赠科研通 3037360
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797614
科研通“疑难数据库(出版商)”最低求助积分说明 757921