Data-Augmented Machine Learning for Predicting Biomass-Derived Hard Carbon Anode Performance in Sodium-Ion Batteries

作者
Gang Chen,Zihan Yang,Peng Sun,Chenglong Wang,Jinliang Li,Guangya Yang,Likun Pan
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2510.12833
摘要

Biomass-derived hard carbon has become the most promising anode material for sodium-ion batteries (SIBs) due to its high capacity and excellent cycling stability. However, the effects of synthesis parameters and structural features on hard carbon's (HC) electrochemical performance are still unclear, requiring time-consuming and resource-intensive experimental investigations. Machine learning (ML) offers a promising solution by training on large datasets to predict hard carbon performance more efficiently, saving time and resources. In this study, four ML models were used to predict the capacity and initial Coulombic efficiency (ICE) of HC. Data augmentation based on the TabPFN technique was employed to improve model robustness under limited data conditions, and the relationships between features and electrochemical performance were examined. Notably, the XGBoost model achieved an R2 of 0.854 and an RMSE of 23.290 mAh g-1 for capacity prediction, and an R2 of 0.868 and an RMSE of 3.813% for ICE prediction. Shapley Additive Explanations (SHAP) and Partial Dependence Plot (PDP) analyses identified carbonization temperature (Temperature_2) as the most important factor influencing both capacity and ICE. Furthermore, we used bamboo as the precursor to synthesize four hard carbons based on the predictive approach. The electrochemical performance of these samples closely matched our predictions. By leveraging machine-learning approach, this study provides an efficient framework for accelerating the screening process of biomass-derived hard carbon candidates.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
瘦瘦绮完成签到 ,获得积分10
刚刚
子枫发布了新的文献求助10
刚刚
子衿完成签到,获得积分10
1秒前
负责玉米完成签到,获得积分10
2秒前
xht发布了新的文献求助10
2秒前
大个应助chengmin采纳,获得10
2秒前
唐飒完成签到,获得积分10
3秒前
huang发布了新的文献求助10
4秒前
4秒前
懒回顾发布了新的文献求助10
4秒前
Orange应助林g采纳,获得10
4秒前
4秒前
5秒前
英姑应助负责玉米采纳,获得10
6秒前
6秒前
6秒前
7秒前
Moon发布了新的文献求助30
9秒前
9秒前
万能图书馆应助didididm采纳,获得10
10秒前
DONG发布了新的文献求助10
10秒前
10秒前
活泼学生发布了新的文献求助10
10秒前
大模型应助xht采纳,获得10
11秒前
xxx完成签到,获得积分10
11秒前
ira发布了新的文献求助10
11秒前
FashionBoy应助LQ采纳,获得30
11秒前
12秒前
qdong完成签到 ,获得积分10
12秒前
莲枳榴莲完成签到,获得积分10
13秒前
大个应助hlxhlx采纳,获得10
13秒前
共享精神应助典雅的俊驰采纳,获得10
14秒前
14秒前
16秒前
16秒前
poppy发布了新的文献求助30
16秒前
香蕉觅云应助DONG采纳,获得10
16秒前
16秒前
邓佳鑫Alan应助合适小刺猬采纳,获得10
17秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5501262
求助须知:如何正确求助?哪些是违规求助? 4597591
关于积分的说明 14459908
捐赠科研通 4531076
什么是DOI,文献DOI怎么找? 2483103
邀请新用户注册赠送积分活动 1466734
关于科研通互助平台的介绍 1439367