亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Graph-theoretical analysis of EEG-based functional connectivity during emotional experience in virtual reality for emotion recognition

作者
Hayoung Jo,Min Jae Lee,Won Hee Lee
出处
期刊:Scientific Reports [Springer Nature]
卷期号:15 (1): 39965-39965
标识
DOI:10.1038/s41598-025-23573-z
摘要

Virtual reality (VR) technologies can induce realistic emotions in controlled experimental settings, offering unprecedented opportunities to study how the human brain processes emotions under real-world conditions. The integration of VR experiences with electroencephalography (EEG) provides a promising potential for gaining novel insights into individual emotional states. However, the complex network dynamics underlying human emotions during VR experiences remain largely unexplored. To address this gap, we leveraged graph-theoretical approaches to investigate functional brain networks derived from EEG signals recorded during immersive VR experiments. We assessed key topological properties of functional brain networks across multiple frequency bands (delta, theta, alpha, beta, gamma, and high gamma) and compared network characteristics between different emotional states (negative, neutral, and positive). Furthermore, we evaluated whether these graph-based features could accurately distinguish between positive and negative emotions using machine learning approaches. Our findings revealed distinct network patterns associated with different emotional states. During negative emotional experiences, we observed two key neural signatures: increased high gamma band activity in the left central region and decreased theta band activity in the occipital region. Conversely, positive emotions were characterized by reduced activity across most frequency bands in the left frontal region. Our machine learning model achieved an average classification accuracy of 79% in differentiating positive and negative emotions using network features that combined graph-theoretical measures and connectivity weights across all frequency bands, with the high gamma band demonstrating particular importance for emotion processing. This study advances our understanding of how brain networks dynamically reorganize during VR-induced emotional experiences and establishes the potential of graph-based EEG features for robust emotion recognition, paving the way for personalized VR applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
今后应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
Criminology34应助科研通管家采纳,获得10
3秒前
Criminology34应助科研通管家采纳,获得10
4秒前
Criminology34应助科研通管家采纳,获得10
4秒前
李春鸿发布了新的文献求助10
6秒前
李春鸿完成签到,获得积分10
13秒前
iorpi完成签到,获得积分10
18秒前
个性的抽象完成签到 ,获得积分10
19秒前
健忘无声完成签到 ,获得积分10
20秒前
Wecple完成签到 ,获得积分10
26秒前
34秒前
38秒前
一独白完成签到,获得积分10
40秒前
40秒前
眼睛大慕卉完成签到 ,获得积分10
43秒前
xiaozhu发布了新的文献求助10
46秒前
整齐泥猴桃完成签到 ,获得积分10
50秒前
52秒前
阿花阿花发布了新的文献求助10
56秒前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
菜根谭完成签到 ,获得积分10
1分钟前
李博士完成签到,获得积分10
1分钟前
幸福的面包完成签到,获得积分10
1分钟前
1分钟前
51发布了新的文献求助10
1分钟前
2分钟前
Vaseegara完成签到 ,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
搜集达人应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
阿花阿花发布了新的文献求助10
2分钟前
zy完成签到 ,获得积分10
2分钟前
2分钟前
Jasper应助Karol采纳,获得10
2分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454743
求助须知:如何正确求助?哪些是违规求助? 4562143
关于积分的说明 14284771
捐赠科研通 4485968
什么是DOI,文献DOI怎么找? 2457164
邀请新用户注册赠送积分活动 1447784
关于科研通互助平台的介绍 1422988